Thromb Haemost 2020; 120(11): 1512-1523
DOI: 10.1055/s-0040-1715441
Coagulation and Fibrinolysis

Evolutionary Adaptations in Pseudonaja Textilis Venom Factor X Induce Zymogen Activity and Resistance to the Intrinsic Tenase Complex

Mark Schreuder*
1   Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
,
Geraldine Poenou*
1   Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
2   AP–HP, Hôpital Louis Mourier, Colombes, France
,
Viola J. F. Strijbis
1   Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
,
Ka Lei Cheung
1   Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
,
Pieter H. Reitsma
1   Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
,
Mettine H. A. Bos
1   Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
› Author Affiliations
Funding This work was financially supported by the Bayer Hemophilia Awards Program (Special Project Award) and Landsteiner Foundation for Blood Transfusion (LSBR, grant. no. 1451). The funding agencies had no role in the preparation, review, or approval of the manuscript.

Abstract

The venom of the Australian snake Pseudonaja textilis comprises powerful prothrombin activators consisting of factor X (v-ptFX)- and factor V-like proteins. While all vertebrate liver-expressed factor X (FX) homologs, including that of P. textilis, comprise an activation peptide of approximately 45 to 65 residues, the activation peptide of v-ptFX is significantly shortened to 27 residues. In this study, we demonstrate that exchanging the human FX activation peptide for the snake venom ortholog impedes proteolytic cleavage by the intrinsic factor VIIIa–factor IXa tenase complex. Furthermore, our findings indicate that the human FX activation peptide comprises an essential binding site for the intrinsic tenase complex. Conversely, incorporation of FX into the extrinsic tissue factor–factor VIIa tenase complex is completely dependent on exosite-mediated interactions. Remarkably, the shortened activation peptide allows for factor V-dependent prothrombin conversion while in the zymogen state. This indicates that the active site of FX molecules comprising the v-ptFX activation peptide partially matures upon assembly into a premature prothrombinase complex. Taken together, the shortened activation peptide is one of the remarkable characteristics of v-ptFX that has been modified from its original form, thereby transforming FX into a powerful procoagulant protein. Moreover, these results shed new light on the structural requirements for serine protease activation and indicate that catalytic activity can be obtained without formation of the characteristic Ile16–Asp194 salt bridge via modification of the activation peptide.

Authors' Contributions

M.S., G.P., and M.H.A.B. designed the research; M.S., G.P., V.J.F.S., and K.L.C. performed the experiments. M.S., G.P., V.J.F.S., K.L.C., P.H.R., and M.H.A.B. analyzed the data; M.S. wrote the manuscript; P.H.R. and M.H.A.B. reviewed and revised the manuscript.


* Co-first authors.


Supplementary Material



Publication History

Received: 18 February 2020

Accepted: 25 June 2020

Article published online:
20 August 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Bos MHA, Van 't Veer C, Reitsma PH. Molecular biology and biochemistry of the coagulation factors and pathways of hemostasis. In: Kaushansky K, Lichtman MA, Prchal JT. eds. Williams Hematology. 9th ed. New York, NY: McGraw-Hill Education; 2016: 1915-1948
  • 2 Toso R, Zhu H, Camire RM. The conformational switch from the factor X zymogen to protease state mediates exosite expression and prothrombinase assembly. J Biol Chem 2008; 283 (27) 18627-18635
  • 3 Rudolph AE, Mullane MP, Porche-Sorbet R, Daust HA, Miletich JP. The role of the factor X activation peptide: a deletion mutagenesis approach. Thromb Haemost 2002; 88 (05) 756-762
  • 4 Yang L, Manithody C, Rezaie AR. Functional role of O-linked and N-linked glycosylation sites present on the activation peptide of factor X. J Thromb Haemost 2009; 7 (10) 1696-1702
  • 5 Huber R, Bode W. Structural basis of the activation and action of trypsin. Acc Chem Res 1978; 11 (11) 114-122
  • 6 Hedstrom L. Serine protease mechanism and specificity. Chem Rev 2002; 102 (12) 4501-4524
  • 7 Rao VS, Kini RM. Pseutarin C, a prothrombin activator from Pseudonaja textilis venom: its structural and functional similarity to mammalian coagulation factor Xa-Va complex. Thromb Haemost 2002; 88 (04) 611-619
  • 8 Bos MH, Camire RM. Procoagulant adaptation of a blood coagulation prothrombinase-like enzyme complex in australian elapid venom. Toxins (Basel) 2010; 2 (06) 1554-1567
  • 9 Rao VS, Swarup S, Manjunatha Kini R. The catalytic subunit of pseutarin C, a group C prothrombin activator from the venom of Pseudonaja textilis, is structurally similar to mammalian blood coagulation factor Xa. Thromb Haemost 2004; 92 (03) 509-521
  • 10 Filippovich I, Sorokina N, St Pierre L. et al. Cloning and functional expression of venom prothrombin activator protease from Pseudonaja textilis with whole blood procoagulant activity. Br J Haematol 2005; 131 (02) 237-246
  • 11 St Pierre L, Masci PP, Filippovich I. et al. Comparative analysis of prothrombin activators from the venom of Australian elapids. Mol Biol Evol 2005; 22 (09) 1853-1864
  • 12 Verhoef D, Visscher KM, Vosmeer CR. et al. Engineered factor Xa variants retain procoagulant activity independent of direct factor Xa inhibitors. Nat Commun 2017; 8 (01) 528
  • 13 Reza MA, Minh Le TN, Swarup S, Manjunatha Kini R. Molecular evolution caught in action: gene duplication and evolution of molecular isoforms of prothrombin activators in Pseudonaja textilis (brown snake). J Thromb Haemost 2006; 4 (06) 1346-1353
  • 14 Higgins DL, Mann KG. The interaction of bovine factor V and factor V-derived peptides with phospholipid vesicles. J Biol Chem 1983; 258 (10) 6503-6508
  • 15 Larson PJ, Camire RM, Wong D. et al. Structure/function analyses of recombinant variants of human factor Xa: factor Xa incorporation into prothrombinase on the thrombin-activated platelet surface is not mimicked by synthetic phospholipid vesicles. Biochemistry 1998; 37 (14) 5029-5038
  • 16 Toso R, Camire RM. Removal of B-domain sequences from factor V rather than specific proteolysis underlies the mechanism by which cofactor function is realized. J Biol Chem 2004; 279 (20) 21643-21650
  • 17 Bos MH, Boltz M, St Pierre L. et al. Venom factor V from the common brown snake escapes hemostatic regulation through procoagulant adaptations. Blood 2009; 114 (03) 686-692
  • 18 Hemker HC, Giesen P, Al Dieri R. et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 2003; 33 (01) 4-15
  • 19 Muczynski V, Verhenne S, Casari C. et al. A thrombin-activatable factor X variant corrects hemostasis in a mouse model for hemophilia A. Thromb Haemost 2019; 119 (12) 1981-1993
  • 20 Lu G, Broze Jr GJ, Krishnaswamy S. Formation of factors IXa and Xa by the extrinsic pathway: differential regulation by tissue factor pathway inhibitor and antithrombin III. J Biol Chem 2004; 279 (17) 17241-17249
  • 21 Zur M, Nemerson Y. Kinetics of factor IX activation via the extrinsic pathway. Dependence of Km on tissue factor. J Biol Chem 1980; 255 (12) 5703-5707
  • 22 Thiec F, Cherel G, Christophe OD. Role of the Gla and first epidermal growth factor-like domains of factor X in the prothrombinase and tissue factor-factor VIIa complexes. J Biol Chem 2003; 278 (12) 10393-10399
  • 23 Chattopadhyay A, Fair DS. Molecular recognition in the activation of human blood coagulation factor X. J Biol Chem 1989; 264 (19) 11035-11043
  • 24 Pinotti M, Marchetti G, Baroni M, Cinotti F, Morfini M, Bernardi F. Reduced activation of the Gla19Ala FX variant via the extrinsic coagulation pathway results in symptomatic CRMred FX deficiency. Thromb Haemost 2002; 88 (02) 236-241
  • 25 Baugh RJ, Dickinson CD, Ruf W, Krishnaswamy S. Exosite interactions determine the affinity of factor X for the extrinsic Xase complex. J Biol Chem 2000; 275 (37) 28826-28833
  • 26 Lechtenberg BC, Murray-Rust TA, Johnson DJ. et al. Crystal structure of the prothrombinase complex from the venom of Pseudonaja textilis. Blood 2013; 122 (16) 2777-2783
  • 27 Estry DW, Tishkoff GH. Apparent intrinsic prothrombinase activity of human Factor X zymogen: identification with Factor VIII inhibitor bypassing activity (FEIBA). Thromb Res 1984; 36 (06) 549-562
  • 28 Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 1990; 76 (01) 1-16
  • 29 Mann KG, Nesheim ME, Hibbard LS, Tracy PB. The role of factor V in the assembly of the prothrombinase complex. Ann N Y Acad Sci 1981; 370: 378-388
  • 30 Hirbawi J, Vaughn JL, Bukys MA, Vos HL, Kalafatis M. Contribution of amino acid region 659-663 of Factor Va heavy chain to the activity of factor Xa within prothrombinase. Biochemistry 2010; 49 (39) 8520-8534
  • 31 Bos MH, Camire RM. A bipartite autoinhibitory region within the B-domain suppresses function in factor V. J Biol Chem 2012; 287 (31) 26342-26351
  • 32 Schreuder M, Reitsma PH, Bos MHA. Blood coagulation factor Va's key interactive residues and regions for prothrombinase assembly and prothrombin binding. J Thromb Haemost 2019; 17 (08) 1229-1239
  • 33 Duffy EJ, Lollar P. Intrinsic pathway activation of factor X and its activation peptide-deficient derivative, factor Xdes-143-191. J Biol Chem 1992; 267 (11) 7821-7827
  • 34 Chen L, Manithody C, Yang L, Rezaie AR. Zymogenic and enzymatic properties of the 70-80 loop mutants of factor X/Xa. Protein Sci 2004; 13 (02) 431-442
  • 35 Baroni M, Pavani G, Pinotti M, Branchini A, Bernardi F, Camire RM. Asymmetric processing of mutant factor X Arg386Cys reveals differences between intrinsic and extrinsic pathway activation. Biochim Biophys Acta 2015; 1854 (10, Pt A): 1351-1356
  • 36 Vanden Hoek AL, Talbot K, Carter IS. et al. Coagulation factor X Arg386 specifically affects activation by the intrinsic pathway: a novel patient mutation. J Thromb Haemost 2012; 10 (12) 2613-2615
  • 37 Baugh RJ, Krishnaswamy S. Role of the activation peptide domain in human factor X activation by the extrinsic Xase complex. J Biol Chem 1996; 271 (27) 16126-16134
  • 38 Kumar A, Fair DS. Specific molecular interaction sites on factor VII involved in factor X activation. Eur J Biochem 1993; 217 (02) 509-518
  • 39 Krishnaswamy S. Exosite-driven substrate specificity and function in coagulation. J Thromb Haemost 2005; 3 (01) 54-67
  • 40 Gupta R, Jung E, Brunak S. Prediction of N-glycosylation sites in human proteins. 2004 ; Available at: http://www.cbs.dtu.dk/services/NetNGlyc/ . Accessed April 2018
  • 41 Iino M, Takeya H, Nishioka J, Nakagaki T, Tamura K, Suzuki K. The role of human factor X activation peptide in activation of factor X by factor IXa. J Biochem 1994; 116 (02) 335-340
  • 42 Inoue K, Morita T. Identification of O-linked oligosaccharide chains in the activation peptides of blood coagulation factor X. The role of the carbohydrate moieties in the activation of factor X. Eur J Biochem 1993; 218 (01) 153-163
  • 43 Sinha U, Wolf DL. Carbohydrate residues modulate the activation of coagulation factor X. J Biol Chem 1993; 268 (05) 3048-3051
  • 44 Steentoft C, Vakhrushev SY, Joshi HJ. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 2013; 32 (10) 1478-1488
  • 45 Pozzi N, Chen Z, Pelc LA, Shropshire DB, Di Cera E. The linker connecting the two kringles plays a key role in prothrombin activation. Proc Natl Acad Sci U S A 2014; 111 (21) 7630-7635
  • 46 Ahnström J, Gierula M, Temenu J, Laffan MA, Lane DA. Partial rescue of naturally occurring active site factor X variants through decreased inhibition by tissue factor pathway inhibitor and antithrombin. J Thromb Haemost 2020; 18 (01) 136-150
  • 47 Joseph JS, Chung MC, Jeyaseelan K, Kini RM. Amino acid sequence of trocarin, a prothrombin activator from Tropidechis carinatus venom: its structural similarity to coagulation factor Xa. Blood 1999; 94 (02) 621-631
  • 48 Rao VS, Joseph JS, Kini RM. Group D prothrombin activators from snake venom are structural homologues of mammalian blood coagulation factor Xa. Biochem J 2003; 369 (Pt 3): 635-642
  • 49 Guéguen P, Cherel G, Badirou I, Denis CV, Christophe OD. Two residues in the activation peptide domain contribute to the half-life of factor X in vivo. J Thromb Haemost 2010; 8 (07) 1651-1653
  • 50 Bunce MW, Toso R, Camire RM. Zymogen-like factor Xa variants restore thrombin generation and effectively bypass the intrinsic pathway in vitro. Blood 2011; 117 (01) 290-298
  • 51 Bode W, Huber R. Induction of the bovine trypsinogen-trypsin transition by peptides sequentially similar to the N-terminus of trypsin. FEBS Lett 1976; 68 (02) 231-236
  • 52 Boxrud PD, Verhamme IM, Fay WP, Bock PE. Streptokinase triggers conformational activation of plasminogen through specific interactions of the amino-terminal sequence and stabilizes the active zymogen conformation. J Biol Chem 2001; 276 (28) 26084-26089
  • 53 Friedrich R, Panizzi P, Fuentes-Prior P. et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 2003; 425 (6957): 535-539
  • 54 Pozzi N, Chen Z, Zapata F. et al. Autoactivation of thrombin precursors. J Biol Chem 2013; 288 (16) 11601-11610
  • 55 Renatus M, Engh RA, Stubbs MT. et al. Lysine 156 promotes the anomalous proenzyme activity of tPA: X-ray crystal structure of single-chain human tPA. EMBO J 1997; 16 (16) 4797-4805
  • 56 Ivanov I, Matafonov A, Sun MF. et al. Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation. Blood 2017; 129 (11) 1527-1537
  • 57 Ivanov I, Verhamme IM, Sun MF. et al. Protease activity in single-chain prekallikrein. Blood 2020; 135 (08) 558-567
  • 58 Isbister GK. Procoagulant snake toxins: laboratory studies, diagnosis, and understanding snakebite coagulopathy. Semin Thromb Hemost 2009; 35 (01) 93-103
  • 59 Masci PP, Rowe EA, Whitaker AN, de Jersey J. Fibrinolysis as a feature of disseminated intravascular coagulation (DIC) after Pseudonaja textilis textilis envenomation. Thromb Res 1990; 59 (05) 859-870
  • 60 Johnston CI, Ryan NM, Page CB. et al. The Australian Snakebite Project, 2005–2015 (ASP-20). Med J Aust 2017; 207 (03) 119-125