CC BY-NC-ND 4.0 · Eur J Dent 2020; 14(03): 397-403
DOI: 10.1055/s-0040-1714453
Original Article

Anti-Inflammatory and Antibacterial Activity of the Chitosan/Chlorhexidine Gel Commercial Preparation for Postexodontia Treatment: An In Vitro Study

Rafael Torres-Rosas
1   Laboratorio de Inmunología, Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
,
Nayely Torres-Gómez
2   Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, México
,
Adriana Moreno-Rodríguez
3   Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
,
René García-Contreras
4   Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León; Universidad Nacional Autónoma de México, León, Guanajuato, México
,
Liliana Argueta-Figueroa
5   Cátedras-Conacyt - Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
› Author Affiliations
Funding This study received its financial support from CONACyT (project number CB-2016–01–284495) assigned to RTR and DGAPA-PAPIIT: IA205518 assigned to RGC.

Abstract

Objective The present study aimed to assess in vitro the antibacterial activity, cytotoxicity, and the expression of prostaglandin E2 (PGE2) of Bexident post topical gel (BP).

Materials and Methods The broth dilution test was performed to analyze the antimicrobial activity of BP against Staphylococcus aureus, Escherichia coli, and Streptococcus mutans. Minimal bactericidal concentrations (MBCs) and minimal inhibitory concentrations (MICs) were assessed. Cytotoxic activity was performed by the MTT (tetrazolium dye) method on human gingival fibroblast (HGF), human bone cells (HBC), and human pulp cells (HPC) (from primary cell culture) and HGF-1 from American Type Culture Collection. The expression of PGE2 produced by RAW 264.7 cells was determined by ELISA utilizing an Enzyme Immuno-Assay Kit.

Statistical Analysis Shapiro–Wilks normality test and Mann–Whitney U test were performed for all data.

Results The MBCs of BP for S. aureus, E. coli, and S. mutans were found at 25, 50, and 12.5%, respectively. The MICs for the same strains were found at 12.5, 25, and 3.125%. The CC50 of BP gel for HBC, HPC, and HGF, and HGF-1 were 12.5 ± 1.09, 0.37 ± 0.02, 0.35 ± 0.02, and 20.4 ± 0.02%, respectively. The levels of expression PGE2 produced by RAW 264.7 cells treated with IL-1β exhibit an inverse dose-dependent effect on the concentrations of BP gel used.

Conclusion Our results indicate that the BP gel has a great antibacterial effect, adequate biocompatibility, showing a decrease in the expression of PGE2 on cells with previously induced inflammation. Due to the above, its use as a healing agent after oral surgery seems to be adequate.



Publication History

Article published online:
20 July 2020

© .

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010; 89 (03) 219-229
  • 2 Hersh EV, Moore PA. Comment on controlling dental post-operative pain and the intraoral local delivery of drugs. Curr Med Res Opin 2015; 31 (12) 2185-2187
  • 3 Lopez-Lopez J, Jan-Pallí E, lez-Navarro BG, Jané-Salas E, Estrugo-Devesa A, Milani M. Efficacy of chlorhexidine, dexpanthenol, allantoin and chitosan gel in comparison with bicarbonate oral rinse in controlling post-interventional inflammation, pain and cicatrization in subjects undergoing dental surgery. Curr Med Res Opin 2015; 31 (12) 2179-2183
  • 4 Arbia W, Arbia L, Adour L, Amrane A. Chitin extraction from crustacean shells using biological methods: a review. Food Technol Biotechnol 2013; 51 (01) 12-25
  • 5 Sarwar MS, Huang Q, Ghaffar A. et al. A smart drug delivery system based on biodegradable chitosan/poly(allylamine hydrochloride) blend films. Pharmaceutics 2020; 12 (02) 131
  • 6 Qasim SB, Zafar MS, Najeeb S. et al. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci 2018; 19 (02) 407
  • 7 Vargas Villanueva JG, Sarmiento Huertas PA, Galan FS, Esteban Rueda RJ, Briceño Triana JC, Casas Rodriguez JP. Bio-adhesion evaluation of a chitosan-based bone bio-adhesive. Int J Adhes Adhes 2019; 92: 80-88
  • 8 Tarsi R, Muzzarelli RA, Guzmán CA, Pruzzo C. Inhibition of Streptococcus mutans adsorption to hydroxyapatite by low-molecular-weight chitosans. J Dent Res 1997; 76 (02) 665-672
  • 9 Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 2010; 144 (01) 51-63
  • 10 Rahimi S, Janani M, Lotfi M. et al. A review of antibacterial agents in endodontic treatment. Iran Endod J 2014; 9 (03) 161-168
  • 11 Basrani BR, Manek S, Sodhi RN, Fillery E, Manzur A. Interaction between sodium hypochlorite and chlorhexidine gluconate. J Endod 2007; 33 (08) 966-969
  • 12 Hidalgo E, Dominguez C. Mechanisms underlying chlorhexidine-induced cytotoxicity. Toxicol In Vitro 2001; 15 (4-5) 271-276
  • 13 Araújo LU, Grabe-Guimarães A, Mosqueira VC, Carneiro CM, Silva-Barcellos NM. Profile of wound healing process induced by allantoin. Acta Cir Bras 2010; 25 (05) 460-466
  • 14 Argueta-Figueroa L, Delgado-García JJ, García-Contreras R. et al. Mineral trioxide aggregate enriched with iron disulfide nanostructures: an evaluation of their physical and biological properties. Eur J Oral Sci 2018; 126 (03) 234-243
  • 15 Kim KS, Anthony BF. Importance of bacterial growth phase in determining minimal bactericidal concentrations of penicillin and methicillin. Antimicrob Agents Chemother 1981; 19 (06) 1075-1077
  • 16 Cuellar-Flores M, Acosta-Torres LS, Martínez-Alvarez O. et al. Effects of alkaline treatment for fibroblastic adhesion on titanium. Dent Res J (Isfahan) 2016; 13 (06) 473-477
  • 17 Torres-Gómez N, Nava O, Argueta-Figueroa L, García-Contreras R, Baeza-Barrera A, Vilchis-Nestor AR. Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: effect of temperature. J Nanomater 2019; 2019: 7921273
  • 18 Li W, Zhou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep 2015; 3 (05) 617-620
  • 19 Garcia-Contreras R, Sugimoto M, Umemura N. et al. Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model. Biomaterials 2015; 57: 33-40
  • 20 Bae K, Jun EJ, Lee SM, Paik DI, Kim JB. Effect of water-soluble reduced chitosan on Streptococcus mutans, plaque regrowth and biofilm vitality. Clin Oral Investig 2006; 10 (02) 102-107
  • 21 Savitha A, SriRekha A, Vijay R. Ashwija, Champa C, Jaykumar T. An in vivo comparative evaluation of antimicrobial efficacy of chitosan, chlorhexidine gluconate gel and their combination as an intracanal medicament against Enterococcus faecalis in failed endodontic cases using real time polymerase chain reaction (qPCR). Saudi Dent J 2019; 31 (03) 360-366
  • 22 Nair G, Panchal A, Gandhi B, Shah S, Shah R. Evaluation and comparision of antimicrobial effects of chlorhexidine (CHX) and chitosan (CHT) mouthwash in chronic periodontitis (CGP) patients: a clinicomicrobiological study. IOSR J Dent Med Sci 2017; 16 (10) 26-32
  • 23 Decker EM, von C Ohle, Weiger R, Wiech I, Brecx M. A synergistic chlorhexidine/chitosan combination for improved antiplaque strategies. J Periodontal Res 2005; 40 (05) 373-377
  • 24 Chronopoulou L, Nocca G, Castagnola M. et al. Chitosan based nanoparticles functionalized with peptidomimetic derivatives for oral drug delivery. N Biotechnol 2016; 33 (01) 23-31
  • 25 Ambrogi V, Pietrella D, Nocchetti M. et al. Montmorillonite-chitosan-chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J Colloid Interface Sci 2017; 491 (01) 265-272
  • 26 Giunchedi P, Juliano C, Gavini E, Cossu M, Sorrenti M. Formulation and in vivo evaluation of chlorhexidine buccal tablets prepared using drug-loaded chitosan microspheres. Eur J Pharm Biopharm 2002; 53 (02) 233-239
  • 27 Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 2010; 62 (01) 3-11
  • 28 Minami S, Oh-oka M, Okamoto Y. et al. Chitosan-inducing hemorrhagic pneumonia in dogs. Carbohydr Polym 1996; 29 (03) 241-246
  • 29 Aranaz I, Acosta N, Civera C. et al. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers (Basel) 2018; 10 (02) 213
  • 30 Arai K. Toxicity of chitosan. Bull Tokai Reg Fish Lab 1968; 56: 86-94
  • 31 Thonemann B, Schmalz G, Hiller KA, Schweikl H. Responses of L929 mouse fibroblasts, primary and immortalized bovine dental papilla-derived cell lines to dental resin components. Dent Mater 2002; 18 (04) 318-323
  • 32 Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011; 31 (05) 986-1000
  • 33 Morand DN, Davideau JL, Clauss F, Jessel N, Tenenbaum H, Huck O. Cytokines during periodontal wound healing: potential application for new therapeutic approach. Oral Dis 2017; 23 (03) 300-311
  • 34 Koh T, Murakami Y, Tanaka S, Machino M, Sakagami H. Re-evaluation of anti-inflammatory potential of eugenol in IL-1β-stimulated gingival fibroblast and pulp cells. In Vivo 2013; 27 (02) 269-273
  • 35 Madrazo-Jiménez M, Rodríguez-Caballero Á, Serrera-Figallo MÁ. et al. The effects of a topical gel containing chitosan, 0.2% chlorhexidine, allantoin and despanthenol on the wound healing process subsequent to impacted lower third molar extraction. Med Oral Patol Oral Cir Bucal 2016; 21 (06) e696-e702
  • 36 Gray HC, Hutcheson PS, Slavin RG. Is glucosamine safe in patients with seafood allergy?. J Allergy Clin Immunol 2004; 114 (02) 459-460
  • 37 Waibel KH, Haney B, Moore M, Whisman B, Gomez R. Safety of chitosan bandages in shellfish allergic patients. Mil Med 2011; 176 (10) 1153-1156
  • 38 Fuller H, Goodwin P, Morris G. An enzyme-linked immunosorbent assay (ELISA) for the major crustacean allergen, tropomyosin, in food. Food Agric Immunol 2006; 17 (01) 43-52
  • 39 Susanto A, Satari MH, Abbas B, Koesoemowidodo RSA, Cahyanto A. Fabrication and characterization of chitosan-collagen membrane from barramundi (lates calcarifer) scales for guided tissue regeneration. Eur J Dent 2019; 13 (03) 370-375
  • 40 Amir LR, Soeroso Y, Fatma D. et al. Periodontal ligament cell sheets and RGD-modified chitosan improved regeneration in the horizontal periodontal defect model. Eur J Dent 2020; 14 (02) 306-314
  • 41 Perchyonok VT, Zhang S, Grobler SR, Oberholzer TG. Insights into and relative effect of chitosan-H, chitosan-H-propolis, chitosan-H-propolis-nystatin and chitosan-H-nystatin on dentine bond strength. Eur J Dent 2013; 7 (04) 412-418
  • 42 Samprasit W, Kaomongkolgit R, Sukma M, Rojanarata T, Ngawhirunpat T, Opanasopit P. Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 2015; 117 (01) 933-940
  • 43 Samprasit W, Rojanarata T, Akkaramongkolporn P, Ngawhirunpat T, Kaomongkolgit R, Opanasopit P. Fabrication and in vitro/in vivo performance of mucoadhesive electrospun nanofiber mats containingα-mangostin. AAPS PharmSciTech 2015; 16 (05) 1140-1152