CC BY-NC-ND 4.0 · Revista Urología Colombiana / Colombian Urology Journal 2020; 29(03): 158-167
DOI: 10.1055/s-0040-1714148
Article of Reflection | Artículo de Reflexión
Rincon del residente/Resident's corner

Precision Medicine, Artificial Intelligence, and Genomic Markers in Urology. Do we need to Tailor our Clinical Practice?

Medicina de precisión, inteligencia artificial y marcadores genómicos en urología. ¿Debemos cambiar nuestra práctica clínica?
1   Division of Urology, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
,
1   Division of Urology, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
› Institutsangaben

Abstract

Precision medicine plays a key role in urological oncology practice nowadays, with the breakthrough of the poly (ADP-ribose) polymerase inhibitors (PARPi), which play a critical role in different DNA damage repair (DDR) pathways, the immune checkpoint inhibitors, the genomic expression profiles and current genome manipulation-directed targeted therapy. Information and technology (IT) are set to change the way we assess and treat patients and should be reviewed and discussed. The aim of the present article is to demonstrate a detailed revision on precision medicine, including novel therapeutic targets, genomic markers, genomic stratification of urological patients, and the top-notch technological breakthroughs that could change our clinical practice

We performed a review of the literature in four different databases (PubMed, Embase, Lilacs, and Scielo) on any information concerning prostate, bladder, kidney and urothelial cancer novel treatments with PARPi, immune checkpoint inhibitors (ICIs), targeted therapy with fibroblast growth factor receptor inhibitors (FGFRi), and theranostics with prostate-specific membrane antigen (PSMA) targeted monoclonal antibodies. Artificial intelligence, machine learning, and deep learning algorithm in urological practice were also part of the search. We included all articles written in English, published within the past 7 years, that discussed outstanding therapies and genomics in urological cancer and artificial intelligence applied to urology. Meanwhile, we excluded articles with lack of a clear methodology and written in any other language than English.

One-hundred and twenty-six articles of interest were found; of these, 65 articles that presented novel treatments of urological neoplasms, discussed precision medicine, genomic expression profiles and biomarkers in urology, and latest deep learning and machine learning algorithms as well as the use of artificial intelligence in urological practice were selected. A critical review of the literature is presented in the present article.

Urology is a constantly changing specialty with a wide range of therapeutic breakthroughs, a huge understanding of the genomic expression profiles for each urological cancer and a tendency to use cutting-edge technology to treat our patients. All of these major developments must be analyzed objectively, taking into account costs to the health systems, risks and benefits to the patients, and the legal background that comes with them. A critical analysis of these new technologies and pharmacological breakthroughs should be made before considering changing our clinical practice. Nowadays, research needs to be strengthened to help us improve results in assessing and treating our patients.

Resumen

La medicina de precisión juega un rol fundamental en la práctica clínica de la urologia oncológica en la actualidad, con el desarrollo de los inhibidores de la poli (ADP-ribosa) polimerasa (PARPi), que juegan un papel fundamental en las distintas vías del reparo del ADN dañado (RAD), los inhibidores del punto de chequeo inmune (ICI), los perfiles de expresión genómicos, y la terapia blanco-dirigida a la manipulación genómica. El desarrollo tecnológico y la informática están cambiando la forma como evaluamos y tratamos a los pacientes, y se debe discutir y revisar a detalle. El objetivo de este artículo es hacer una revisión detallada acerca de la medicina de precisión, genómica, y los avances tecnológicos en nuestro campo.

Realizamos una revisión de la literatura en cuatro bases de datos diferentes (PubMed, Embase, Lilacs, y Scielo), buscando cualquier información relacionada con cáncer de próstata, vejiga, riñón y carcinoma urotelial, tratamientos novedosos con PARPi, ICI, terapia-blanco con inhibidores del receptor del factor de crecimiento de los fibroblastos (FGFRi) y teragnósticos con anticuerpos monoclonales dirigidos al antígeno de membrana específico de la próstata (AMEP). Inteligencia artificial, aprendizaje de máquinas y algoritmos de aprendizaje profundo en la práctica urológica también fueron revisados. Incluimos artículos escritos en inglés, publicados dentro de los últimos 7 años, que abordaran terapias novedosas y genómica en cáncer urológico e inteligencia artificial aplicada a la urología. Excluimos artículos con falta de una metodología adecuada y escritos en cualquier idioma diferente al inglés.

En total, 126 artículos de interés fueron encontrados, y, de estos seleccionamos 65 artículos que reportaban tratamientos novedosos para neoplasias urológicas, discutían medicina de precisión y perfiles de expresión genómica y bio-marcadores en urología, algoritmos de aprendizaje profundo, aprendizaje de máquina, y el uso de inteligencia artificial en la práctica urológica. Se hizo una revisión crítica de la literatura que se presenta en este artículo.

La urología es una especialidad constantemente en cambio, con un gran rango de avances terapéuticos, un gran conocimiento de los perfiles de expresión genómica para cada cáncer urológico, y una tendencia a utilizar tecnología de punta para estudiar y tratar a nuestros pacientes. Todos estos desarrollos se deben analizar objetivamente, y hay que tener en cuenta los costos al sistema de salud, los riesgos y beneficios para los pacientes, y el contexto legal que implica cada uno. Hasta la fecha, estos avances tecnológicos y farmacológicos se deben analizar con cautela antes de vernos en la posición de cambiar nuestra práctica clínica. Se debe fortalecer la investigación médica para mejorar los resultados en el tratamiento y abordaje de nuestros pacientes.



Publikationsverlauf

Eingereicht: 19. Februar 2020

Angenommen: 26. Mai 2020

Artikel online veröffentlicht:
22. September 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Sociedad Colombiana de Urología. Publicado por Thieme Revinter Publicações Ltda
Rio de Janeiro, Brazil

 
  • References

  • 1 Roychowdhury S, Chinnaiyan AM. Advancing precision medicine for prostate cancer through genomics. J Clin Oncol 2013; 31 (15) 1866-1873
  • 2 Considine B, Petrylak DP. Novel Targets and Precision Medicine for Prostate Cancer-Part 2: Tumor Profiling and Personalized Therapy in Patients With Castration-Resistant Prostate Cancer. Oncology (Williston Park) 2019; 33 (04) 128-131
  • 3 Zumsteg ZS, Spratt DE. Precision Medicine for Localized Prostate Cancer: Time to Move Beyond NCCN Risk Stratification?. Int J Radiat Oncol Biol Phys 2019; 103 (01) 92-94 DOI: 10.1016/j.ijrobp.2018.09.040 [Internet].
  • 4 Nuhn P, De Bono JS, Fizazi K. , et al. Update on Systemic Prostate Cancer Therapies: Management of Metastatic Castration-resistant Prostate Cancer in the Era of Precision Oncology. Eur Urol 2019; 75 (01) 88-99 DOI: 10.1016/j.eururo.2018.03.028 [Internet].
  • 5 Abbod MF, Catto JWF, Linkens DA, Hamdy FC. Application of artificial intelligence to the management of urological cancer. J Urol 2007; 178 (4 Pt 1): 1150-1156
  • 6 Narayan VM, Dahm P. The future of clinical trials in urological oncology. Nat Rev Urol 2019; 16 (12) 722-733 DOI: 10.1038/s41585-019-0243-x [Internet].
  • 7 Harmon SA, Tuncer S, Sanford T, Choyke PL, Türkbey B. Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn Interv Radiol 2019; 25 (03) 183-188
  • 8 Venkatesan M. Artificial Intelligence vs. Machine Learning vs. Deep Learning. Data Sci Cent 2018;2 Available from: https://www.datasciencecentral.com/profiles/blogs/artificial-intelligence-vs-machine-learning-vs-deep-learning
  • 9 Ghani KR, Zheng K, Wei JT, Friedman CP. Harnessing big data for health care and research: are urologists ready?. Eur Urol 2014; 66 (06) 975-977 DOI: 10.1016/j.eururo.2014.07.032 [Internet].
  • 10 Bulten W, Pinckaers H, van Boven H. , et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol 2020; 21 (02) 233-241 DOI: 10.1016/S1470-2045(19)30739-9 [Internet].
  • 11 Shkolyar E, Jia X, Chang TC. , et al. Augmented Bladder Tumor Detection Using Deep Learning. Eur Urol 2019; 76 (06) 714-718 DOI: 10.1016/j.eururo.2019.08.032 [Internet].
  • 12 Nagpal K, Foote D, Liu Y. , et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit Med 2019; 2 (01) [Internet] DOI: 10.1038/s41746-019-0112-2.
  • 13 Ali AM, Zhuang H, Ibrahim A, Rehman O, Huang M, Wu A. A machine learning approach for the classification of kidney cancer subtypes using miRNA genome data. Appl Sci (Basel) 2018;8(12):
  • 14 Tabibu S, Vinod PK, Jawahar CV. Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning. Sci Rep 2019; 9 (01) 10509 DOI: 10.1038/s41598-019-46718-3 [Internet].
  • 15 Poirion OB, Chaudhary K, Garmire LX. Deep Learning data integration for better risk stratification models of bladder cancer. AMIA Jt Summits Transl Sci Proc 2018; 2017: 197-206
  • 16 Jahrreiss V, Veser J, Seitz C, Özsoy M. Artificial intelligence: the future of urinary stone management?. Curr Opin Urol 2020; 30 (02) 196-199
  • 17 Athie A, Arce-Gallego S, Gonzalez M. , et al. Targeting DNA Repair Defects for Precision Medicine in Prostate Cancer. Curr Oncol Rep 2019; 21 (05) 42
  • 18 Nadal R, Bellmunt J. Management of metastatic bladder cancer. Cancer Treat Rev 2019; 76 (76) 10-21 DOI: 10.1016/j.ctrv.2019.04.002 [Internet].
  • 19 Akanksha M, Sandhya S. Role of FGFR3 in urothelial carcinoma. Iran J Pathol 2019; 14 (02) 148-155
  • 20 Loriot Y, Necchi A, Park SH. , et al; BLC2001 Study Group. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med 2019; 381 (04) 338-348
  • 21 Cancer P, Psma-based G, Psma L. Preparing Your Practice for the New Era of Theranostics. 2015; 4 (03) 7-10
  • 22 Motzer RJ, Tannir NM, McDermott DF. , et al; CheckMate 214 Investigators. Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018; 378 (14) 1277-1290
  • 23 Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res 2019; 25 (13) 3753-3758
  • 24 Motzer RJ, Escudier B, McDermott DF. , et al; CheckMate 025 Investigators. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015; 373 (19) 1803-1813
  • 25 Sharma P, Siefker-Radtke A, de Braud F. , et al. Nivolumab alone and with ipilimumab in previously treated metastatic urothelial carcinoma: CheckMate 032 nivolumab 1 mg/kg plus ipilimumab 3 mg/kg expansion cohort results. J Clin Oncol 2019; 37 (19) 1608-1616
  • 26 Sharma P, Retz M, Siefker-Radtke A. , et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2017; 18 (03) 312-322
  • 27 Motzer RJ, Penkov K, Haanen J. , et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019; 380 (12) 1103-1115
  • 28 Powles T, Durán I, van der Heijden MS. , et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018; 391 (10122): 748-757
  • 29 Rini BI, Powles T, Atkins MB. , et al; IMmotion151 Study Group. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 2019; 393 (10189): 2404-2415
  • 30 Rini BI, Plimack ER, Stus V. , et al; KEYNOTE-426 Investigators. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019; 380 (12) 1116-1127
  • 31 Bellmunt J, de Wit R, Vaughn DJ. , et al; KEYNOTE-045 Investigators. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017; 376 (11) 1015-1026
  • 32 Balar AV, Castellano D, O'Donnell PH. , et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol 2017; 18 (11) 1483-1492 DOI: 10.1016/S1470-2045(17)30616-2 [Internet].
  • 33 Stenehjem DD, Hahn AW, Gill DM. , et al. Predictive genomic markers of response to VEGF targeted therapy in metastatic renal cell carcinoma. PLoS One 2019; 14 (01) e0210415
  • 34 Mateo J, Porta N, Bianchini D. , et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 2020; 21 (01) 162-174 DOI: 10.1016/S1470-2045(19)30684-9 [Internet].
  • 35 Sandhu SK, Hussain M, Mateo J. , et al. PROfound: Phase III study of olaparib versus enzalutamide or abiraterone for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene alterations. Ann Oncol 2019; 30 (November): ix188-ix189
  • 36 Abida W, Campbell D, Patnaik A. , et al. Preliminary results from the TRITON2 study of rucaparib in patients (pts) with DNA damage repair (DDR)-deficient metastatic castration-resistant prostate cancer (mCRPC): Updated analyses. Ann Oncol 2019; 30 (October): v327-v328 DOI: 10.1093/annonc/mdz248.003 [Internet].
  • 37 Virtanen V, Paunu K, Ahlskog JK, Varnai R, Sipeky C, Sundvall M. PARP inhibitors in prostate cancer—The preclinical rationale and current clinical development. Genes (Basel) 2019; 10 (08) 1-19
  • 38 de Bono J, Mateo J, Fizazi K. , et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med 2020; 382 (22) 2091-2102
  • 39 Abida W, Bryce AH, Vogelzang NJ. , et al. 793PDPreliminary results from TRITON2: A phase II study of rucaparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination repair (HRR) gene alterations. Ann Oncol 2018; 29 (Suppl. 08) 2018
  • 40 Tan TZ, Rouanne M, Tan KT, Huang RYJ, Thiery JP. Molecular Subtypes of Urothelial Bladder Cancer: Results from a Meta-cohort Analysis of 2411 Tumors. Eur Urol 2019; 75 (03) 423-432 DOI: 10.1016/j.eururo.2018.08.027 [Internet].
  • 41 Choi W, Porten S, Kim S, Willis D, Plimack ER, Roth B. , et al. chemotherapy. 2015; 25 (02) 152-165
  • 42 Sartor AO, Morris MJ, Krause BJ. VISION: An international, prospective, open-label, multicenter, randomized phase 3 study of 177Lu-PSMA-617 in the treatment of patients with progressive PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 2019; 37 (15_suppl): TPS5099-TPS5099 [Internet] 10.1200/JCO.2019.37.15_suppl.TPS5099
  • 43 Gaur S, Lay N, Harmon SA. , et al. Can computer-aided diagnosis assist in the identification of prostate cancer on prostate MRI? a multi-center, multi-reader investigation. Oncotarget 2018; 9 (73) 33804-33817
  • 44 Yang X, Liu C, Wang Z. , et al. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Med Image Anal 2017; 42: 212-227
  • 45 McGarry SD, Hurrell SL, Iczkowski KA. , et al. Radio-pathomic Maps of Epithelium and Lumen Density Predict the Location of High-Grade Prostate Cancer. Int J Radiat Oncol Biol Phys 2018; 101 (05) 1179-1187
  • 46 Chatterjee A, Bourne RM, Wang S. , et al. Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study. Radiology 2018; 287 (03) 864-873
  • 47 Gorelick L, Veksler O, Gaed M. , et al. Prostate histopathology: learning tissue component histograms for cancer detection and classification. IEEE Trans Med Imaging 2013; 32 (10) 1804-1818
  • 48 Nguyen K, Sarkar A, Jain AK. Prostate cancer grading: use of graph cut and spatial arrangement of nuclei. IEEE Trans Med Imaging 2014; 33 (12) 2254-2270
  • 49 Heiner S, Lieske J, Marcus R, Knoedler J, Dirks S, Fletcher J. , et al. Use of dedicated stone analysis software to assess urinary stone size: towards semi-automated metrics to enhance prediction of spontaneous stone passage. 2017
  • 50 Kriegshauser JS, Paden RG, He M. , et al. Rapid kV-switching single-source dual-energy CT ex vivo renal calculi characterization using a multiparametric approach: refining parameters on an expanded dataset. Abdom Radiol (NY) 2018; 43 (06) 1439-1445
  • 51 Malmir B, Amini M, Chang SI. A medical decision support system for disease diagnosis under uncertainty. Expert Syst Appl 2017; 88: 95-108
  • 52 Shoar K, Turney BW, Cleveland RO. Tracking kidney stones in a homogeneous medium using a trilateration approach. J Acoust Soc Am 2017; 142 (06) 3715-3721
  • 53 Aminsharifi A, Irani D, Pooyesh S. , et al. Artificial Neural Network System to Predict the Postoperative Outcome of Percutaneous Nephrolithotomy. J Endourol 2017; 31 (05) 461-467
  • 54 Seckiner I, Seckiner S, Sen H, Bayrak O, Dogan K, Erturhan S. A neural network - based algorithm for predicting stone - free status after ESWL therapy. Int Braz J Urol 2017; 43 (06) 1110-1114
  • 55 Chen J, Remulla D, Nguyen JH. , et al. Current status of artificial intelligence applications in urology and their potential to influence clinical practice. Vol. 124, BJU International. Blackwell Publishing Ltd; 2019: 567-577
  • 56 Nosrati MS, Amir-Khalili A, Peyrat JM. , et al. Endoscopic scene labelling and augmentation using intraoperative pulsatile motion and colour appearance cues with preoperative anatomical priors. Int J CARS 2016; 11 (08) 1409-1418
  • 57 Al O, Alawamlh H, Flannigan R. , et al. Modeling automated assessment of surgical performance utilizing computer vision: proof of concept. J Urol 2018; 199 (42) e1134
  • 58 Ghani KR, Liu Y, Law H, Miller DC, Montie J, Deng J. Video analysis of skill and technique (vast): machine learning to assess surgeons performing robotic prostatectomy. J Urol 2017; 197 (4S): e891