Semin Neurol 2020; 40(05): 502-514
DOI: 10.1055/s-0040-1713874
Review Article

The “Sick-but-not-Dead” Phenomenon Applied to Catecholamine Deficiency in Neurodegenerative Diseases

David S. Goldstein
1   Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
› Author Affiliations

Abstract

The catecholamines dopamine and norepinephrine are key central neurotransmitters that participate in many neurobehavioral processes and disease states. Norepinephrine is also the main neurotransmitter mediating regulation of the circulation by the sympathetic nervous system. Several neurodegenerative disorders feature catecholamine deficiency. The most common is Parkinson's disease (PD), in which putamen dopamine content is drastically reduced. PD also entails severely decreased myocardial norepinephrine content, a feature that characterizes two other Lewy body diseases—pure autonomic failure and dementia with Lewy bodies. It is widely presumed that tissue catecholamine depletion in these conditions results directly from loss of catecholaminergic neurons; however, as highlighted in this review, there are also important functional abnormalities in extant residual catecholaminergic neurons. We refer to this as the “sick-but-not-dead” phenomenon. The malfunctions include diminished dopamine biosynthesis via tyrosine hydroxylase (TH) and L-aromatic-amino-acid decarboxylase (LAAAD), inefficient vesicular sequestration of cytoplasmic catecholamines, and attenuated neuronal reuptake via cell membrane catecholamine transporters. A unifying explanation for catecholaminergic neurodegeneration is autotoxicity exerted by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediate in cytoplasmic dopamine metabolism. In PD, putamen DOPAL is built up with respect to dopamine, associated with a vesicular storage defect and decreased aldehyde dehydrogenase activity. Probably via spontaneous oxidation, DOPAL potently oligomerizes and forms quinone-protein adducts with (“quinonizes”) α-synuclein (AS), a major constituent in Lewy bodies, and DOPAL-induced AS oligomers impede vesicular storage. DOPAL also quinonizes numerous intracellular proteins and inhibits enzymatic activities of TH and LAAAD. Treatments targeting DOPAL formation and oxidation therefore might rescue sick-but-not-dead catecholaminergic neurons in Lewy body diseases.



Publication History

Article published online:
09 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Goldstein DS, Eisenhofer G, McCarty R. Catecholamines: Bridging Basic Science with Clinical Medicine. New York: Academic Press; 1998
  • 2 Nagatsu T, Nabeshima T, Goldstein DS. , eds. Catecholamine Research: From Molecular Insights to Clinical Medicine. New York, NY: Plenum; 2002
  • 3 Eiden LE. A New Era of Catecholamines in the Laboratory and Clinic. In: Eiden LE. ed. New York: Elsevier; 2013
  • 4 Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol 2011; 96 (07) 611-622
  • 5 Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res 2015; 116 (06) 976-990
  • 6 Ziegler MG, Lake CR, Kopin IJ. The sympathetic-nervous-system defect in primary orthostatic hypotension. N Engl J Med 1977; 296 (06) 293-297
  • 7 Goldstein DS, Holmes C, Sharabi Y, Brentzel S, Eisenhofer G. Plasma levels of catechols and metanephrines in neurogenic orthostatic hypotension. Neurology 2003; 60 (08) 1327-1332
  • 8 Polinsky RJ, Brown RT, Burns RS, Harvey-White J, Kopin IJ. Low lumbar CSF levels of homovanillic acid and 5-hydroxyindoleacetic acid in multiple system atrophy with autonomic failure. J Neurol Neurosurg Psychiatry 1988; 51 (07) 914-919
  • 9 Goldstein DS, Sullivan P, Holmes C, Mash DC, Kopin IJ, Sharabi Y. Determinants of denervation-independent depletion of putamen dopamine in Parkinson's disease and multiple system atrophy. Parkinsonism Relat Disord 2017; 35: 88-91
  • 10 Kato S, Oda M, Hayashi H. et al. Decrease of medullary catecholaminergic neurons in multiple system atrophy and Parkinson's disease and their preservation in amyotrophic lateral sclerosis. J Neurol Sci 1995; 132 (02) 216-221
  • 11 Suzuki M, Kurita A, Hashimoto M. et al. Impaired myocardial 123I-metaiodobenzylguanidine uptake in Lewy body disease: comparison between dementia with Lewy bodies and Parkinson's disease. J Neurol Sci 2006; 240 (1-2): 15-19
  • 12 Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system [in German]. Wien Klin Wochenschr 1960; 38: 1236-1239
  • 13 Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 1973; 20 (04) 415-455
  • 14 Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N Engl J Med 1988; 318 (14) 876-880
  • 15 Goldstein DS, Sullivan P, Holmes C, Kopin IJ, Basile MJ, Mash DC. Catechols in post-mortem brain of patients with Parkinson disease. Eur J Neurol 2011; 18 (05) 703-710
  • 16 Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Res 1983; 275 (02) 321-328
  • 17 Kish SJ, Shannak KS, Rajput AH, Gilbert JJ, Hornykiewicz O. Cerebellar norepinephrine in patients with Parkinson's disease and control subjects. Arch Neurol 1984; 41 (06) 612-614
  • 18 Shannak K, Rajput A, Rozdilsky B, Kish S, Gilbert J, Hornykiewicz O. Noradrenaline, dopamine and serotonin levels and metabolism in the human hypothalamus: observations in Parkinson's disease and normal subjects. Brain Res 1994; 639 (01) 33-41
  • 19 Cash R, Dennis T, L'Heureux R, Raisman R, Javoy-Agid F, Scatton B. Parkinson's disease and dementia: norepinephrine and dopamine in locus ceruleus. Neurology 1987; 37 (01) 42-46
  • 20 Zarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 2003; 60 (03) 337-341
  • 21 Goldstein DS, Sullivan P, Holmes C, Miller GW, Sharabi Y, Kopin IJ. A vesicular sequestration to oxidative deamination shift in myocardial sympathetic nerves in Parkinson's disease. J Neurochem 2014; 131 (02) 219-228
  • 22 Goldstein DS, Sharabi Y. The heart of PD: Lewy body diseases as neurocardiologic disorders. Brain Res 2019; 1702: 74-84
  • 23 Goldstein DS, Pekker MJ, Eisenhofer G, Sharabi Y. Computational modeling reveals multiple abnormalities of myocardial noradrenergic function in Lewy body diseases. JCI Insight 2019; 5: 130441
  • 24 Taki J, Nakajima K, Hwang EH. et al. Peripheral sympathetic dysfunction in patients with Parkinson's disease without autonomic failure is heart selective and disease specific. taki@med.kanazawa-u.ac.jp. Eur J Nucl Med 2000; 27 (05) 566-573
  • 25 Goldstein DS, Holmes CS, Dendi R, Bruce SR, Li ST. Orthostatic hypotension from sympathetic denervation in Parkinson's disease. Neurology 2002; 58 (08) 1247-1255
  • 26 Tipre DN, Goldstein DS. Cardiac and extracardiac sympathetic denervation in Parkinson's disease with orthostatic hypotension and in pure autonomic failure. J Nucl Med 2005; 46 (11) 1775-1781
  • 27 Matsui H, Udaka F, Oda M, Kubori T, Nishinaka K, Kameyama M. Metaiodobenzylguanidine (MIBG) scintigraphy at various parts of the body in Parkinson's disease and multiple system atrophy. Auton Neurosci 2005; 119 (01) 56-60
  • 28 Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997; 388 (6645): 839-840
  • 29 Isonaka R, Sullivan P, Jinsmaa Y, Corrales A, Goldstein DS. Spectrum of abnormalities of sympathetic tyrosine hydroxylase and alpha-synuclein in chronic autonomic failure. Clin Auton Res 2018; 28 (02) 223-230
  • 30 Wakabayashi K, Takahashi H, Ohama E, Ikuta F. Parkinson's disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol 1990; 79 (06) 581-583
  • 31 Yamamoto S, Fukae J, Mori H, Mizuno Y, Hattori N. Positive immunoreactivity for vesicular monoamine transporter 2 in Lewy bodies and Lewy neurites in substantia nigra. Neurosci Lett 2006; 396 (03) 187-191
  • 32 Garland EM, Hooper WB, Robertson D. Pure autonomic failure. Handb Clin Neurol 2013; 117: 243-257
  • 33 Coon EA, Singer W, Low PA. Pure autonomic failure. Mayo Clin Proc 2019; 94 (10) 2087-2098
  • 34 van Ingelghem E, van Zandijcke M, Lammens M. Pure autonomic failure: a new case with clinical, biochemical, and necropsy data. J Neurol Neurosurg Psychiatry 1994; 57 (06) 745-747
  • 35 Hague K, Lento P, Morgello S, Caro S, Kaufmann H. The distribution of Lewy bodies in pure autonomic failure: autopsy findings and review of the literature. Acta Neuropathol 1997; 94 (02) 192-196
  • 36 Arai K, Kato N, Kashiwado K, Hattori T. Pure autonomic failure in association with human alpha-synucleinopathy. Neurosci Lett 2000; 296 (2-3): 171-173
  • 37 Miura H, Tsuchiya K, Kubodera T, Shimamura H, Matsuoka T. An autopsy case of pure autonomic failure with pathological features of Parkinson's disease [in Japanese]. Rinsho Shinkeigaku 2001; 41 (01) 40-44
  • 38 Goldstein DS, Holmes C, Sato T. et al. Central dopamine deficiency in pure autonomic failure. Clin Auton Res 2008; 18 (02) 58-65
  • 39 Kaufmann H, Hague K, Perl D. Accumulation of alpha-synuclein in autonomic nerves in pure autonomic failure. Neurology 2001; 56 (07) 980-981
  • 40 Shishido T, Ikemura M, Obi T. et al. Alpha-synuclein accumulation in skin nerve fibers revealed by skin biopsy in pure autonomic failure. Neurology 2010; 74 (07) 608-610
  • 41 Donadio V, Incensi A, Cortelli P. et al. Skin sympathetic fiber α-synuclein deposits: a potential biomarker for pure autonomic failure. Neurology 2013; 80 (08) 725-732
  • 42 Donadio V, Incensi A, Piccinini C. et al. Skin nerve misfolded α-synuclein in pure autonomic failure and Parkinson disease. Ann Neurol 2016; 79 (02) 306-316
  • 43 Donadio V, Incensi A, El-Agnaf O. et al. Skin α-synuclein deposits differ in clinical variants of synucleinopathy: an in vivo study. Sci Rep 2018; 8 (01) 14246
  • 44 Kaufmann H, Norcliffe-Kaufmann L, Palma JA. , et al; Autonomic Disorders Consortium. Natural history of pure autonomic failure: a United States prospective cohort. Ann Neurol 2017; 81 (02) 287-297
  • 45 Isonaka R, Holmes C, Cook Jr GA, Sullivan P, Sharabi Y, Goldstein DS. Is pure autonomic failure a distinct nosologic entity?. Clin Auton Res 2017; 27 (02) 121-122
  • 46 Isonaka R, Holmes C, Cook GA, Sullivan P, Sharabi Y, Goldstein DS. Pure autonomic failure without synucleinopathy. Clin Auton Res 2017; 27 (02) 97-101
  • 47 Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 1998; 95 (11) 6469-6473
  • 48 Gelpi E, Navarro-Otano J, Tolosa E. et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov Disord 2014; 29 (08) 1010-1018
  • 49 Thaisetthawatkul P, Boeve BF, Benarroch EE. et al. Autonomic dysfunction in dementia with Lewy bodies. Neurology 2004; 62 (10) 1804-1809
  • 50 Benarroch EE. Brainstem in multiple system atrophy: clinicopathological correlations. Cell Mol Neurobiol 2003; 23 (4-5): 519-526
  • 51 Goldstein DS, Holmes C, Patronas N, Kopin IJ. Cerebrospinal fluid levels of catechols in patients with neurogenic orthostatic hypotension. Clin Sci (Lond) 2003; 104 (06) 649-654
  • 52 Goldstein DS, Polinsky RJ, Garty M. et al. Patterns of plasma levels of catechols in neurogenic orthostatic hypotension. Ann Neurol 1989; 26 (04) 558-563
  • 53 Raffel DM, Koeppe RA, Little R. et al. PET measurement of cardiac and nigrostriatal denervation in Parkinsonian syndromes. J Nucl Med 2006; 47 (11) 1769-1777
  • 54 Orimo S, Kanazawa T, Nakamura A. et al. Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy. Acta Neuropathol 2007; 113 (01) 81-86
  • 55 Cook GA, Sullivan P, Holmes C, Goldstein DS. Cardiac sympathetic denervation without Lewy bodies in a case of multiple system atrophy. Parkinsonism Relat Disord 2014; 20 (08) 926-928
  • 56 Kordower JH, Olanow CW, Dodiya HB. et al. Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain 2013; 136 (Pt 8): 2419-2431
  • 57 DelleDonne A, Klos KJ, Fujishiro H. et al. Incidental Lewy body disease and preclinical Parkinson disease. Arch Neurol 2008; 65 (08) 1074-1080
  • 58 Pifl C, Rajput A, Reither H. et al. Is Parkinson's disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J Neurosci 2014; 34 (24) 8210-8218
  • 59 Goldstein DS, Holmes C, Sullivan P. et al. Deficient vesicular storage: a common theme in catecholaminergic neurodegeneration. Parkinsonism Relat Disord 2015; 21 (09) 1013-1022
  • 60 Miller GW, Erickson JD, Perez JT. et al. Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson's disease. Exp Neurol 1999; 156 (01) 138-148
  • 61 Goldstein DS, Holmes C, Kopin IJ, Sharabi Y. Intra-neuronal vesicular uptake of catecholamines is decreased in patients with Lewy body diseases. J Clin Invest 2011; 121 (08) 3320-3330
  • 62 Phan JA, Stokholm K, Zareba-Paslawska J. et al. Early synaptic dysfunction induced by α-synuclein in a rat model of Parkinson's disease. Sci Rep 2017; 7 (01) 6363
  • 63 Chen MK, Kuwabara H, Zhou Y. et al. VMAT2 and dopamine neuron loss in a primate model of Parkinson's disease. J Neurochem 2008; 105 (01) 78-90
  • 64 Caudle WM, Richardson JR, Wang MZ. et al. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 2007; 27 (30) 8138-8148
  • 65 Taylor TN, Alter SP, Wang M, Goldstein DS, Miller GW. Reduced vesicular storage of catecholamines causes progressive degeneration in the locus ceruleus. Neuropharmacology 2014; 76 (Pt A): 97-105
  • 66 Taylor TN, Caudle WM, Shepherd KR. et al. Nonmotor symptoms of Parkinson's disease revealed in an animal model with reduced monoamine storage capacity. J Neurosci 2009; 29 (25) 8103-8113
  • 67 Guillot TS, Miller GW. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol Neurobiol 2009; 39 (02) 149-170
  • 68 Lohr KM, Stout KA, Dunn AR. et al. Increased vesicular monoamine transporter 2 (VMAT2; Slc18a2) protects against methamphetamine toxicity. ACS Chem Neurosci 2015; 6 (05) 790-799
  • 69 Lohr KM, Bernstein AI, Stout KA. et al. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc Natl Acad Sci U S A 2014; 111 (27) 9977-9982
  • 70 Ciesielska A, Samaranch L, San Sebastian W. et al. Depletion of AADC activity in caudate nucleus and putamen of Parkinson's disease patients; implications for ongoing AAV2-AADC gene therapy trial. PLoS One 2017; 12 (02) e0169965
  • 71 Grünblatt E, Riederer P. Aldehyde dehydrogenase (ALDH) in Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2016; 123 (02) 83-90
  • 72 Fitzmaurice AG, Rhodes SL, Lulla A. et al. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci U S A 2013; 110 (02) 636-641
  • 73 Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 2014; 94 (01) 1-34
  • 74 Chen CH, Joshi AU, Mochly-Rosen D. The role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in neuropathology and neurodegeneration. Acta Neurol Taiwan 2016; 25 (04) 111-123
  • 75 Goldstein DS, Sullivan P, Holmes C. et al. Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson's disease. J Neurochem 2013; 126 (05) 591-603
  • 76 Goldstein DS, Sullivan P, Holmes C, Kopin IJ, Sharabi Y, Mash DC. Decreased vesicular storage and aldehyde dehydrogenase activity in multiple system atrophy. Parkinsonism Relat Disord 2015; 21 (06) 567-572
  • 77 Wey MC, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease. PLoS One 2012; 7 (02) e31522
  • 78 Casida JE, Ford B, Jinsmaa Y, Sullivan P, Cooney A, Goldstein DS. Benomyl, aldehyde dehydrogenase, DOPAL, and the catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease. Chem Res Toxicol 2014; 27 (08) 1359-1361
  • 79 Chiu CC, Yeh TH, Lai SC. et al. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp Neurol 2015; 263: 244-253
  • 80 Liu G, Yu J, Ding J. et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J Clin Invest 2014; 124 (07) 3032-3046
  • 81 Zhang M, Shoeb M, Goswamy J. et al. Overexpression of aldehyde dehydrogenase 1A1 reduces oxidation-induced toxicity in SH-SY5Y neuroblastoma cells. J Neurosci Res 2010; 88 (03) 686-694
  • 82 Sherer TB, Kim JH, Betarbet R, Greenamyre JT. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 2003; 179 (01) 9-16
  • 83 Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone model of Parkinson's disease. Neurobiol Dis 2009; 34 (02) 279-290
  • 84 Zhang ZN, Zhang JS, Xiang J. et al. Subcutaneous rotenone rat model of Parkinson's disease: dose exploration study. Brain Res 2017; 1655: 104-113
  • 85 Lamensdorf I, Eisenhofer G, Harvey-White J, Hayakawa Y, Kirk K, Kopin IJ. Metabolic stress in PC12 cells induces the formation of the endogenous dopaminergic neurotoxin, 3,4-dihydroxyphenylacetaldehyde. J Neurosci Res 2000; 60 (04) 552-558
  • 86 Goldstein DS, Sullivan P, Cooney A, Jinsmaa Y, Kopin IJ, Sharabi Y. Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson's disease. J Neurochem 2015; 133 (01) 14-25
  • 87 Chidsey CA, Braunwald E. Sympathetic activity and neurotransmitter depletion in congestive heart failure. Pharmacol Rev 1966; 18 (01) 685-700
  • 88 Pierpont GL, Francis GS, DeMaster EG, Levine TB, Bolman RM, Cohn JN. Elevated left ventricular myocardial dopamine in preterminal idiopathic dilated cardiomyopathy. Am J Cardiol 1983; 52 (08) 1033-1035
  • 89 Schofer J, Tews A, Langes K, Bleifeld W, Reimitz PE, Mathey DG. Relationship between myocardial norepinephrine content and left ventricular function--an endomyocardial biopsy study. Eur Heart J 1987; 8 (07) 748-753
  • 90 Port JD, Gilbert EM, Larrabee P. et al. Neurotransmitter depletion compromises the ability of indirect-acting amines to provide inotropic support in the failing human heart. Circulation 1990; 81 (03) 929-938
  • 91 Anderson FL, Port JD, Reid BB, Larrabee P, Hanson G, Bristow MR. Myocardial catecholamine and neuropeptide Y depletion in failing ventricles of patients with idiopathic dilated cardiomyopathy. Correlation with beta-adrenergic receptor downregulation. Circulation 1992; 85 (01) 46-53
  • 92 Correa-Araujo R, Oliveira JS, Ricciardi Cruz A. Cardiac levels of norepinephrine, dopamine, serotonin and histamine in Chagas' disease. Int J Cardiol 1991; 31 (03) 329-336
  • 93 Popov VG, Lazutin VK, Khitrov NK, Zhelnov VV, Svistukhin AI. Noradrenaline and adrenaline content in different areas of the heart in patients dying of myocardial infarct [in Russian]. Kardiologiia 1975; 15 (10) 102-107
  • 94 Li W, Knowlton D, Van Winkle DM, Habecker BA. Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol 2004; 286 (06) H2229-H2236
  • 95 Neubauer B, Christensen NJ. Norepinephrine, epinephrine, and dopamine contents of the cardiovascular system in long-term diabetics. Diabetes 1976; 25 (01) 6-10
  • 96 Kontos HA, Richardson DW, Norvell JE. Norepinephrine depletion in idiopathic orthostatic hypotension. Ann Intern Med 1975; 82 (03) 336-341
  • 97 Amino T, Orimo S, Itoh Y, Takahashi A, Uchihara T, Mizusawa H. Profound cardiac sympathetic denervation occurs in Parkinson disease. Brain Pathol 2005; 15 (01) 29-34
  • 98 Dickson DW, Fujishiro H, DelleDonne A. et al. Evidence that incidental Lewy body disease is pre-symptomatic Parkinson's disease. Acta Neuropathol 2008; 115 (04) 437-444
  • 99 Orimo S, Uchihara T, Nakamura A. et al. Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson's disease. Brain 2008; 131 (Pt 3): 642-650
  • 100 Fujishiro H, Frigerio R, Burnett M. et al. Cardiac sympathetic denervation correlates with clinical and pathologic stages of Parkinson's disease. Mov Disord 2008; 23 (08) 1085-1092
  • 101 Ghebremedhin E, Del Tredici K, Langston JW, Braak H. Diminished tyrosine hydroxylase immunoreactivity in the cardiac conduction system and myocardium in Parkinson's disease: an anatomical study. Acta Neuropathol 2009; 118 (06) 777-784
  • 102 Takahashi M, Ikemura M, Oka T. et al. Quantitative correlation between cardiac MIBG uptake and remaining axons in the cardiac sympathetic nerve in Lewy body disease. J Neurol Neurosurg Psychiatry 2015; 86 (09) 939-944
  • 103 Plotegher N, Berti G, Ferrari E. et al. DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Sci Rep 2017; 7: 40699
  • 104 Volpicelli-Daley LA. Effects of α-synuclein on axonal transport. Neurobiol Dis 2017; 105: 321-327
  • 105 Mexas LM, Florang VR, Doorn JA. Inhibition and covalent modification of tyrosine hydroxylase by 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Neurotoxicology 2011; 32 (04) 471-477
  • 106 Tehranian R, Montoya SE, Van Laar AD, Hastings TG, Perez RG. Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. J Neurochem 2006; 99 (04) 1188-1196
  • 107 Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects. J Neural Transm Suppl 2007; ••• (72) 113-120
  • 108 Meredith IT, Eisenhofer G, Lambert GW, Dewar EM, Jennings GL, Esler MD. Cardiac sympathetic nervous activity in congestive heart failure. Evidence for increased neuronal norepinephrine release and preserved neuronal uptake. Circulation 1993; 88 (01) 136-145
  • 109 Polinsky RJ, Goldstein DS, Brown RT, Keiser HR, Kopin IJ. Decreased sympathetic neuronal uptake in idiopathic orthostatic hypotension. Ann Neurol 1985; 18 (01) 48-53
  • 110 Perfeito R, Cunha-Oliveira T, Rego AC. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 2013; 62: 186-201
  • 111 Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson's disease. Mov Disord 2011; 26 (06) 1049-1055
  • 112 Goldstein DS, Kopin IJ, Sharabi Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 2014; 144 (03) 268-282
  • 113 Carlsson A, Fornstedt B. Possible mechanisms underlying the special vulnerability of dopaminergic neurons. Acta Neurol Scand Suppl 1991; 136: 16-18
  • 114 Weingarten P, Zhou QY. Protection of intracellular dopamine cytotoxicity by dopamine disposition and metabolism factors. J Neurochem 2001; 77 (03) 776-785
  • 115 Dukes AA, Korwek KM, Hastings TG. The effect of endogenous dopamine in rotenone-induced toxicity in PC12 cells. Antioxid Redox Signal 2005; 7 (5-6): 630-638
  • 116 Khan FH, Sen T, Maiti AK, Jana S, Chatterjee U, Chakrabarti S. Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson's disease. Biochim Biophys Acta 2005; 1741 (1-2): 65-74
  • 117 Hasegawa T, Matsuzaki-Kobayashi M, Takeda A. et al. Alpha-synuclein facilitates the toxicity of oxidized catechol metabolites: implications for selective neurodegeneration in Parkinson's disease. FEBS Lett 2006; 580 (08) 2147-2152
  • 118 Bisaglia M, Mammi S, Bubacco L. Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 2007; 282 (21) 15597-15605
  • 119 Chen L, Ding Y, Cagniard B. et al. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 2008; 28 (02) 425-433
  • 120 Paris I, Lozano J, Perez-Pastene C, Muñoz P, Segura-Aguilar J. Molecular and neurochemical mechanisms in PD pathogenesis. Neurotox Res 2009; 16 (03) 271-279
  • 121 Leong SL, Cappai R, Barnham KJ, Pham CL. Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem Res 2009; 34 (10) 1838-1846
  • 122 Mosharov EV, Larsen KE, Kanter E. et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 2009; 62 (02) 218-229
  • 123 Hastings TG. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson's disease. J Bioenerg Biomembr 2009; 41 (06) 469-472
  • 124 Bisaglia M, Greggio E, Maric D, Miller DW, Cookson MR, Bubacco L. Alpha-synuclein overexpression increases dopamine toxicity in BE2-M17 cells. BMC Neurosci 2010; 11: 41
  • 125 Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA. The origins of oxidant stress in Parkinson's disease and therapeutic strategies. Antioxid Redox Signal 2011; 14 (07) 1289-1301
  • 126 Wu YN, Johnson SW. Dopamine oxidation facilitates rotenone-dependent potentiation of N-methyl-D-aspartate currents in rat substantia nigra dopamine neurons. Neuroscience 2011; 195: 138-144
  • 127 Jana S, Sinha M, Chanda D. et al. Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: implications in dopamine cytotoxicity and pathogenesis of Parkinson's disease. Biochim Biophys Acta 2011; 1812 (06) 663-673
  • 128 Surh YJ, Kim HJ. Neurotoxic effects of tetrahydroisoquinolines and underlying mechanisms. Exp Neurobiol 2010; 19 (02) 63-70
  • 129 Lee HJ, Baek SM, Ho DH, Suk JE, Cho ED, Lee SJ. Dopamine promotes formation and secretion of non-fibrillar alpha-synuclein oligomers. Exp Mol Med 2011; 43 (04) 216-222
  • 130 Gautam AH, Zeevalk GD. Characterization of reduced and oxidized dopamine and 3,4-dihydrophenylacetic acid, on brain mitochondrial electron transport chain activities. Biochim Biophys Acta 2011; 1807 (07) 819-828
  • 131 Muñoz P, Paris I, Sanders LH, Greenamyre JT, Segura-Aguilar J. Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochim Biophys Acta 2012; 1822 (07) 1125-1136
  • 132 Bisaglia M, Greggio E, Beltramini M, Bubacco L. Dysfunction of dopamine homeostasis: clues in the hunt for novel Parkinson's disease therapies. FASEB J 2013; 27 (06) 2101-2110
  • 133 Su Y, Duan J, Ying Z. et al. Increased vulnerability of parkin knock down PC12 cells to hydrogen peroxide toxicity: the role of salsolinol and NM-salsolinol. Neuroscience 2013; 233: 72-85
  • 134 Banerjee K, Munshi S, Sen O, Pramanik V, Roy Mukherjee T, Chakrabarti S. Dopamine cytotoxicity involves both oxidative and nonoxidative pathways in SH-SY5Y cells: potential role of alpha-synuclein overexpression and proteasomal inhibition in the etiopathogenesis of Parkinson's disease. Parkinsons Dis 2014; 2014: 878935
  • 135 Cai H, Liu G, Sun L, Ding J. Aldehyde dehydrogenase 1 making molecular inroads into the differential vulnerability of nigrostriatal dopaminergic neuron subtypes in Parkinson's disease. Transl Neurodegener 2014; 3: 27
  • 136 Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J. Are dopamine oxidation metabolites involved in the loss of dopaminergic neurons in the nigrostriatal system in Parkinson's disease?. ACS Chem Neurosci 2017; 8 (04) 702-711
  • 137 Burbulla LF, Song P, Mazzulli JR. et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science 2017; 357 (6357): 1255-1261
  • 138 Mor DE, Tsika E, Mazzulli JR. et al. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 2017; 20 (11) 1560-1568
  • 139 Badillo-Ramírez I, Saniger JM, Rivas-Arancibia S. 5-S-cysteinyl-dopamine, a neurotoxic endogenous metabolite of dopamine: implications for Parkinson's disease. Neurochem Int 2019; 129: 104514
  • 140 Linsenbardt AJ, Wilken GH, Westfall TC, Macarthur H. Cytotoxicity of dopaminochrome in the mesencephalic cell line, MN9D, is dependent upon oxidative stress. Neurotoxicology 2009; 30 (06) 1030-1035
  • 141 Segura-Aguilar J. On the role of aminochrome in mitochondrial dysfunction and endoplasmic reticulum stress in Parkinson's disease. Front Neurosci 2019; 13: 271
  • 142 Montine TJ, Picklo MJ, Amarnath V, Whetsell Jr WO, Graham DG. Neurotoxicity of endogenous cysteinylcatechols. Exp Neurol 1997; 148 (01) 26-33
  • 143 Storch A, Ott S, Hwang YI. et al. Selective dopaminergic neurotoxicity of isoquinoline derivatives related to Parkinson's disease: studies using heterologous expression systems of the dopamine transporter. Biochem Pharmacol 2002; 63 (05) 909-920
  • 144 Nagatsu T. Isoquinoline neurotoxins in the brain and Parkinson's disease. Neurosci Res 1997; 29 (02) 99-111
  • 145 Mattammal MB, Haring JH, Chung HD, Raghu G, Strong R. An endogenous dopaminergic neurotoxin: implication for Parkinson's disease. Neurodegeneration 1995; 4 (03) 271-281
  • 146 Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 2007; 59 (02) 125-150
  • 147 Panneton WM, Kumar VB, Gan Q, Burke WJ, Galvin JE. The neurotoxicity of DOPAL: behavioral and stereological evidence for its role in Parkinson disease pathogenesis. PLoS One 2010; 5 (12) e15251
  • 148 Burke WJ, Li SW, Chung HD. et al. Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology 2004; 25 (1-2): 101-115
  • 149 Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS. 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson's disease pathogenesis. Brain Res 2003; 989 (02) 205-213
  • 150 Kristal BS, Conway AD, Brown AM. et al. Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria. Free Radic Biol Med 2001; 30 (08) 924-931
  • 151 Lamensdorf I, Eisenhofer G, Harvey-White J, Nechustan A, Kirk K, Kopin IJ. 3,4-Dihydroxyphenylacetaldehyde potentiates the toxic effects of metabolic stress in PC12 cells. Brain Res 2000; 868 (02) 191-201
  • 152 Leiphon LJ, Picklo Sr MJ. Inhibition of aldehyde detoxification in CNS mitochondria by fungicides. Neurotoxicology 2007; 28 (01) 143-149
  • 153 Li SW, Lin TS, Minteer S, Burke WJ. 3,4-Dihydroxyphenylacetaldehyde and hydrogen peroxide generate a hydroxyl radical: possible role in Parkinson's disease pathogenesis. Brain Res Mol Brain Res 2001; 93 (01) 1-7
  • 154 Anderson DG, Mariappan SV, Buettner GR, Doorn JA. Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J Biol Chem 2011; 286 (30) 26978-26986
  • 155 Nilsson GE, Tottmar O. Biogenic aldehydes in brain: on their preparation and reactions with rat brain tissue. J Neurochem 1987; 48 (05) 1566-1572
  • 156 Jinsmaa Y, Sharabi Y, Sullivan P, Isonaka R, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde-induced protein modifications and their mitigation by N-acetylcysteine. J Pharmacol Exp Ther 2018; 366 (01) 113-124
  • 157 Vermeer LM, Florang VR, Doorn JA. Catechol and aldehyde moieties of 3,4-dihydroxyphenylacetaldehyde contribute to tyrosine hydroxylase inhibition and neurotoxicity. Brain Res 2012; 1474: 100-109
  • 158 MacKerell Jr AD, Pietruszko R. Chemical modification of human aldehyde dehydrogenase by physiological substrate. Biochim Biophys Acta 1987; 911 (03) 306-317
  • 159 Saha S, Khan MAI, Mudhara D, Deep S. Tuning the balance between fibrillation and oligomerization of α-synuclein in the presence of dopamine. ACS Omega 2018; 3 (10) 14213-14224
  • 160 Huenchuguala S, Sjödin B, Mannervik B, Segura-Aguilar J. Novel alpha-synuclein oligomers formed with the aminochrome-glutathione conjugate are not neurotoxic. Neurotox Res 2019; 35 (02) 432-440
  • 161 Muñoz P, Cardenas S, Huenchuguala S. et al. DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci 2015; 145 (01) 37-47
  • 162 Pham CL, Leong SL, Ali FE. et al. Dopamine and the dopamine oxidation product 5,6-dihydroxylindole promote distinct on-pathway and off-pathway aggregation of alpha-synuclein in a pH-dependent manner. J Mol Biol 2009; 387 (03) 771-785
  • 163 Burke WJ, Kumar VB, Pandey N. et al. Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol 2008; 115 (02) 193-203
  • 164 Follmer C, Coelho-Cerqueira E, Yatabe-Franco DY. et al. Oligomerization and membrane-binding properties of covalent adducts formed by the interaction of α-synuclein with the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem 2015; 290 (46) 27660-27679
  • 165 Werner-Allen JW, Levine RL, Bax A. Superoxide is the critical driver of DOPAL autoxidation, lysyl adduct formation, and crosslinking of α-synuclein. Biochem Biophys Res Commun 2017; 487 (02) 281-286
  • 166 Werner-Allen JW, DuMond JF, Levine RL, Bax A. Toxic dopamine metabolite DOPAL forms an unexpected dicatechol pyrrole adduct with lysines of α-synuclein. Angew Chem Int Ed Engl 2016; 55 (26) 7374-7378
  • 167 Werner-Allen JW, Monti S, DuMond JF, Levine RL, Bax A. Isoindole linkages provide a pathway for DOPAL-mediated cross-linking of α-synuclein. Biochemistry 2018; 57 (09) 1462-1474
  • 168 Winner B, Jappelli R, Maji SK. et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 2011; 108 (10) 4194-4199
  • 169 Gustafsson G, Lindström V, Rostami J. et al. Alpha-synuclein oligomer-selective antibodies reduce intracellular accumulation and mitochondrial impairment in alpha-synuclein exposed astrocytes. J Neuroinflammation 2017; 14 (01) 241
  • 170 Deas E, Cremades N, Angelova PR. et al. Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson's disease. Antioxid Redox Signal 2016; 24 (07) 376-391
  • 171 Jinsmaa Y, Sullivan P, Gross D, Cooney A, Sharabi Y, Goldstein DS. Divalent metal ions enhance DOPAL-induced oligomerization of alpha-synuclein. Neurosci Lett 2014; 569: 27-32
  • 172 Kang SS, Zhang Z, Liu X. et al. TrkB neurotrophic activities are blocked by α-synuclein, triggering dopaminergic cell death in Parkinson's disease. Proc Natl Acad Sci U S A 2017; 114 (40) 10773-10778
  • 173 Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox Res 2003; 5 (03) 165-176
  • 174 Segura-Aguilar J. On the role of endogenous neurotoxins and neuroprotection in Parkinson's disease. Neural Regen Res 2017; 12 (06) 897-901
  • 175 Mazzulli JR, Mishizen AJ, Giasson BI. et al. Cytosolic catechols inhibit alpha-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci 2006; 26 (39) 10068-10078
  • 176 Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord 2019; 34 (02) 167-179
  • 177 Cagle BS, Crawford RA, Doorn JA. Biogenic aldehyde-mediated mechanisms of toxicity in neurodegenerative disease. Curr Opin Toxicol 2019; 13: 16-21
  • 178 Dell'Acqua S, Bacchella C, Monzani E. et al. Prion peptides are extremely sensitive to copper induced oxidative stress. Inorg Chem 2017; 56 (18) 11317-11325
  • 179 Goldstein DS, Jinsmaa Y, Sullivan P, Sharabi Y. N-acetylcysteine prevents the increase in spontaneous oxidation of dopamine during monoamine oxidase inhibition in PC12 cells. Neurochem Res 2017; 42 (11) 3289-3295
  • 180 Anderson DG, Florang VR, Schamp JH, Buettner GR, Doorn JA. Antioxidant-mediated modulation of protein reactivity for 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Chem Res Toxicol 2016; 29 (07) 1098-1107
  • 181 Jinsmaa Y, Sharabi Y, Sullivan P, Isonaka R, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde-induced protein modifications and their mitigation by N-Acetylcysteine. J Pharmacol Exp Ther 2018; 366 (01) 113-124
  • 182 Rees JN, Florang VR, Eckert LL, Doorn JA. Protein reactivity of 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is dependent on both the aldehyde and the catechol. Chem Res Toxicol 2009; 22 (07) 1256-1263
  • 183 Gaugler MN, Genc O, Bobela W. et al. Nigrostriatal overabundance of α-synuclein leads to decreased vesicle density and deficits in dopamine release that correlate with reduced motor activity. Acta Neuropathol 2012; 123 (05) 653-669
  • 184 Guo JT, Chen AQ, Kong Q, Zhu H, Ma CM, Qin C. Inhibition of vesicular monoamine transporter-2 activity in alpha-synuclein stably transfected SH-SY5Y cells. Cell Mol Neurobiol 2008; 28 (01) 35-47
  • 185 Park SS, Schulz EM, Lee D. Disruption of dopamine homeostasis underlies selective neurodegeneration mediated by alpha-synuclein. Eur J Neurosci 2007; 26 (11) 3104-3112
  • 186 Volles MJ, Lansbury Jr PT. Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 2002; 41 (14) 4595-4602
  • 187 Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 2002; 277 (41) 38884-38894
  • 188 Mosharov EV, Staal RG, Bové J. et al. Alpha-synuclein overexpression increases cytosolic catecholamine concentration. J Neurosci 2006; 26 (36) 9304-9311
  • 189 Jinsmaa Y, Florang VR, Rees JN, Anderson DG, Strack S, Doorn JA. Products of oxidative stress inhibit aldehyde oxidation and reduction pathways in dopamine catabolism yielding elevated levels of a reactive intermediate. Chem Res Toxicol 2009; 22 (05) 835-841
  • 190 Sarafian TA, Yacoub A, Kunz A. et al. Enhanced mitochondrial inhibition by 3,4-dihydroxyphenyl-acetaldehyde (DOPAL)-oligomerized α-synuclein. J Neurosci Res 2019; 97 (12) 1689-1705
  • 191 Del Tredici K, Braak H. Lewy pathology and neurodegeneration in premotor Parkinson's disease. Mov Disord 2012; 27 (05) 597-607
  • 192 Isonaka R, Rosenberg AZ, Sullivan P. et al. Alpha-synuclein deposition within sympathetic noradrenergic neurons is associated with myocardial noradrenergic deficiency in neurogenic orthostatic hypotension. Hypertension 2019; 73 (04) 910-918
  • 193 Mittermeyer G, Christine CW, Rosenbluth KH. et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson's disease. Hum Gene Ther 2012; 23 (04) 377-381
  • 194 Christine CW, Bankiewicz KS, Van Laar AD. et al. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson's disease. Ann Neurol 2019; 85 (05) 704-714
  • 195 Goldstein DS, Jinsmaa Y, Sullivan P, Holmes C, Kopin IJ, Sharabi Y. Comparison of monoamine oxidase inhibitors in decreasing production of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells. J Pharmacol Exp Ther 2016; 356 (02) 483-492
  • 196 Deepmala SJ, Slattery J, Kumar N. et al. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci Biobehav Rev 2015; 55: 294-321
  • 197 Monti DA, Zabrecky G, Kremens D. et al. N-acetyl cysteine is associated with dopaminergic improvement in Parkinson's disease. Clin Pharmacol Ther 2019; 106 (04) 884-890
  • 198 Fowler JS, Logan J, Volkow ND. et al. Evidence that formulations of the selective MAO-B inhibitor, selegiline, which bypass first-pass metabolism, also inhibit MAO-A in the human brain. Neuropsychopharmacology 2015; 40 (03) 650-657
  • 199 Olanow CW, Rascol O, Hauser R. , et al; ADAGIO Study Investigators. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N Engl J Med 2009; 361 (13) 1268-1278
  • 200 Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson's disease pathogenesis. Mol Neurodegener 2019; 14 (01) 35