J Neurol Surg B Skull Base 2021; 82(05): 576-592
DOI: 10.1055/s-0040-1713775
Original Article

The Role of 3D Tractography in Skull Base Surgery: Technological Advances, Feasibility, and Early Clinical Assessment with Anterior Skull Base Meningiomas

1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Melanie B. Fukui
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Lior Gonen
2   Department of Neurosurgery, Shaare Zedek Medical Center, Jerusalem, Israel
,
Austin Epping
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Jonathan E. Jennings
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Laila Perez de San Roman Mena
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Sammy Khalili
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Maharaj Singh
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Juanita M. Celix
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Bhavani Kura
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Nathaniel Kojis
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Richard A. Rovin
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
,
Amin B. Kassam
1   Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin, United States
› Institutsangaben

Abstract

Objective The aim of this study is to determine feasibility of incorporating three-dimensional (3D) tractography into routine skull base surgery planning and analyze our early clinical experience in a subset of anterior cranial base meningiomas (ACM).

Methods Ninety-nine skull base endonasal and transcranial procedures were planned in 94 patients and retrospectively reviewed with a further analysis of the ACM subset.

Main Outcome Measures (1) Automated generation of 3D tractography; (2) co-registration 3D tractography with computed tomography (CT), CT angiography (CTA), and magnetic resonance imaging (MRI); and (3) demonstration of real-time manipulation of 3D tractography intraoperatively. ACM subset: (1) pre- and postoperative cranial nerve function, (2) qualitative assessment of white matter tract preservation, and (3) frontal lobe fluid-attenuated inversion recovery (FLAIR) signal abnormality.

Results Automated 3D tractography, with MRI, CT, and CTA overlay, was produced in all cases and was available intraoperatively. ACM subset: 8 (44%) procedures were performed via a ventral endoscopic endonasal approach (EEA) corridor and 12 (56%) via a dorsal anteromedial (DAM) transcranial corridor. Four cases (olfactory groove meningiomas) were managed with a combined, staged approach using ventral EEA and dorsal transcranial corridors. Average tumor volume reduction was 90.3 ± 15.0. Average FLAIR signal change was –30.9% ± 58.6. 11/12 (92%) patients (DAM subgroup) demonstrated preservation of, or improvement in, inferior fronto-occipital fasciculus volume. Functional cranial nerve recovery was 89% (all cases).

Conclusion It is feasible to incorporate 3D tractography into the skull base surgical armamentarium. The utility of this tool in improving outcomes will require further study.



Publikationsverlauf

Eingereicht: 04. Februar 2020

Angenommen: 25. April 2020

Artikel online veröffentlicht:
14. August 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bello L, Gambini A, Castellano A. et al. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 2008; 39 (01) 369-382
  • 2 Wu JS, Zhou LF, Tang WJ. et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 2007; 61 (05) 935-948 , discussion 948–949
  • 3 Abdullah KG, Lubelski D, Nucifora PG, Brem S. Use of diffusion tensor imaging in glioma resection. Neurosurg Focus 2013; 34 (04) E1 . Doi: 10.3171/2013.1.FOCUS12412
  • 4 Nimsky C. Intraoperative acquisition of fMRI and DTI. Neurosurg Clin N Am 2011; 22 (02) 269-277 , ix
  • 5 Witwer BP, Moftakhar R, Hasan KM. et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 2002; 97 (03) 568-575
  • 6 Romano A, D'Andrea G, Minniti G. et al. Pre-surgical planning and MR-tractography utility in brain tumour resection. Eur Radiol 2009; 19 (12) 2798-2808
  • 7 Clark CA, Barrick TR, Murphy MM, Bell BA. White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning?. Neuroimage 2003; 20 (03) 1601-1608
  • 8 Prevedello DM, Ditzel Filho LF, Fernandez-Miranda JC. et al. Magnetic resonance imaging fluid-attenuated inversion recovery sequence signal reduction after endoscopic endonasal transcribiform total resection of olfactory groove meningiomas. Surg Neurol Int 2015; 6: 158 . Doi: 10.4103/2152-7806.166846
  • 9 Synaptive Medical. BrightMatterTM Plan. 2015.www.synaptivemedical.com/products/plan/
  • 10 Chakravarthi S, Monroy-Sosa A, Gonen L. et al. Reanalyzing the “far medial” (transcondylar-transtubercular) approach based on three anatomical vectors: the ventral posterolateral corridor. J Neurosurg Sci 2018; 62 (03) 347-355
  • 11 Kassam AB, Prevedello DM, Carrau RL. et al. The front door to Meckel's cave: an anteromedial corridor via expanded endoscopic endonasal approach- technical considerations and clinical series. Neurosurgery 2009;64(3, Suppl)ons71–ons82, discussion ons82–ons83. Doi: 10.1227/01.NEU.0000335162.36862.54
  • 12 Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part I. Crista galli to the sella turcica. Neurosurg Focus 2005; 19 (01) E3
  • 13 Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurg Focus 2005; 19 (01) E4
  • 14 Gardner PA, Kassam AB, Thomas A. et al. Endoscopic endonasal resection of anterior cranial base meningiomas. Neurosurgery 2008; 63 (01) 36-52 , discussion 52–54
  • 15 Rangel-Castilla L, Russin JJ, Spetzler RF. Surgical management of skull base tumors. Rep Pract Oncol Radiother 2016; 21 (04) 325-335
  • 16 Komotar RJ, Starke RM, Raper DM, Anand VK, Schwartz TH. Endoscopic endonasal versus open transcranial resection of anterior midline skull base meningiomas. World Neurosurg 2012; 77 (5-6): 713-724
  • 17 Schroeder HW. Indications and limitations of the endoscopic endonasal approach for anterior cranial base meningiomas. World Neurosurg 2014; 82 (6, Suppl): S81-S85
  • 18 Yaşargil MG. A legacy of microneurosurgery: memoirs, lessons, and axioms. [Miscellaneous Article] Neurosurgery 1999; 45 (05) 1025-1092
  • 19 Yasargil MG. Surgical concerns. In: Microneurosurgery. 3B. New York: Thieme; 1988: 25-53
  • 20 de Almeida JR, Carvalho F, Vaz Guimaraes Filho F. et al. Comparison of endoscopic endonasal and bifrontal craniotomy approaches for olfactory groove meningiomas: a matched pair analysis of outcomes and frontal lobe changes on MRI. J Clin Neurosci 2015; 22 (11) 1733-1741
  • 21 Bowers CA, Altay T, Couldwell WT. Surgical decision-making strategies in tuberculum sellae meningioma resection. Neurosurg Focus 2011; 30 (05) E1 . Doi: 10.3171/2011.2.FOCUS1115
  • 22 de Divitiis E, Esposito F, Cappabianca P, Cavallo LM, de Divitiis O. Tuberculum sellae meningiomas: high route or low route? A series of 51 consecutive cases. Neurosurgery 2008; 62 (03) 556-563 , discussion 556–563
  • 23 Kitano M, Taneda M, Nakao Y. Postoperative improvement in visual function in patients with tuberculum sellae meningiomas: results of the extended transsphenoidal and transcranial approaches. J Neurosurg 2007; 107 (02) 337-346
  • 24 Fatemi N, Dusick JR, de Paiva Neto MA, Malkasian D, Kelly DF. Endonasal versus supraorbital keyhole removal of craniopharyngiomas and tuberculum sellae meningiomas. Neurosurgery 2009;64(05, Suppl 2):269–284, discussion 284–286
  • 25 Ottenhausen M, Rumalla K, Alalade AF. et al. Decision-making algorithm for minimally invasive approaches to anterior skull base meningiomas. Neurosurg Focus 2018; 44 (04) E7 . Doi: 10.3171/2018.1.FOCUS17734
  • 26 Bi WL, Abedalthagafi M, Horowitz P. et al. Genomic landscape of intracranial meningiomas. J Neurosurg 2016; 125 (03) 525-535
  • 27 Aguiar PH, Tahara A, Almeida AN. et al. Olfactory groove meningiomas: approaches and complications. J Clin Neurosci 2009; 16 (09) 1168-1173
  • 28 Bi WL, Dunn IF. Current and emerging principles in surgery for meningioma. Linchuang Zhongliuxue Zazhi 2017; 6 (Suppl. 01) S7 . Doi: 10.21037/cco.2017.06.10
  • 29 Bassiouni H, Asgari S, Stolke D. Olfactory groove meningiomas: functional outcome in a series treated microsurgically. Acta Neurochir (Wien) 2007; 149 (02) 109-121 , discussion 121
  • 30 Ciurea AV, Iencean SM, Rizea RE, Brehar FM. Olfactory groove meningiomas: a retrospective study on 59 surgical cases. Neurosurg Rev 2012; 35 (02) 195-202 , discussion 202
  • 31 de Almeida JR, Carvalho F, Vaz Guimaraes Filho F. et al. Comparison of endoscopic endonasal and bifrontal craniotomy approaches for olfactory groove meningiomas: a matched pair analysis of outcomes and frontal lobe changes on MRI. J Clin Neurosci 2015; 22 (11) 1733-1741
  • 32 Abbassy M, Woodard TD, Sindwani R, Recinos PF. An overview of anterior skull base meningiomas and the endoscopic endonasal approach. Otolaryngol Clin North Am 2016; 49 (01) 141-152
  • 33 Di Maio S, Ramanathan D, Garcia-Lopez R. et al. Evolution and future of skull base surgery: the paradigm of skull base meningiomas. World Neurosurg 2012; 78 (3-4): 260-275
  • 34 Brastianos PK, Horowitz PM, Santagata S. et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 2013; 45 (03) 285-289
  • 35 Gunel M. , Yale-Bonn-Cologne Brain Tumor Genetics Study Group. 218 Meningioma Driver Mutations Determine Their Anatomical Site of Origin. Neurosurgery 2016; 63 (Suppl. 01) 185 . Doi: 10.1227/01.neu.0000489787.29664.ec
  • 36 Byvalsev VA, Stepanov IA, Belykh EG, Yarullina AI. [Molecular biology of brain meningiomas]. Patol Fiziol Eksp Ter 2017; 61 (02) 82-91
  • 37 Gonen L, Chakravarthi SS, Monroy-Sosa A. et al. Initial experience with a robotically operated video optical telescopic-microscope in cranial neurosurgery: feasibility, safety, and clinical applications. Neurosurg Focus 2017; 42 (05) E9 . Doi: 10.3171/2017.3.FOCUS1712
  • 38 Snyderman CH, Pant H, Carrau RL, Prevedello D, Gardner P, Kassam AB. What are the limits of endoscopic sinus surgery?: the expanded endonasal approach to the skull base. Keio J Med 2009; 58 (03) 152-160
  • 39 Prevedello DM, Thomas A, Gardner P, Snyderman CH, Carrau RL, Kassam AB. Endoscopic endonasal resection of a synchronous pituitary adenoma and a tuberculum sellae meningioma: technical case report. Neurosurgery 2007;60(04, Suppl 2):E401, discussion E401. Doi: 10.1227/01.NEU.0000255359.94571.91
  • 40 Ditzel Filho LFS, Prevedello DM, Jamshidi AO. et al. Endoscopic endonasal approach for removal of tuberculum sellae meningiomas. Neurosurg Clin N Am 2015; 26 (03) 349-361