CC BY-NC-ND 4.0 · Indian Journal of Neurotrauma 2020; 17(01): 28-32
DOI: 10.1055/s-0040-1713458
Review Article

Techniques for Differentiating Motor and Sensory Fascicles of a Peripheral Nerve—A Review

Pawan Agarwal
1   Plastic Surgery Unit, Netaji Subhash Chandra Bose Government Medical College, Jabalpur, Madhya Pradesh, India
,
Jitin Bajaj
2   Department of Neurosurgery, Super Specialty Hospital, Netaji Subhash Chandra Bose Government Medical College, Jabalpur, Madhya Pradesh, India
,
Dhananjaya Sharma
3   Department of Surgery, Netaji Subhash Chandra Bose Government Medical College, Jabalpur, Madhya Pradesh, India
› Author Affiliations
Funding This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Abstract

Differentiating motor and sensory fascicles before anastomosis is essential for achieving an excellent postoperative functional outcome for peripheral mixed nerves injuries. However, identifying them is not easy. There are several techniques to address this important issue. Each identifying technique has its own pros and cons; this narrative review highlights the salient features of each of these. Many of the newer techniques need to be tested in humans before they can be recommended for regular use; till then we have to rely mainly on per operative electrical stimulation of nerve to differentiate between sensory and motor fascicles to improve postoperative functional outcome.



Publication History

Article published online:
18 June 2020

© .

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Deutinger M, Girsch W, Burggasser G. et al. Peripheral nerve repair in the hand with and without motor sensory differentiation. J Hand Surg Am 1993; 18 (03) 426-432
  • 2 Carlstedt T, Lugnegard H, Andersson M. Pacinian corpuscles after nerve repair in humans. Periph Nerve Repair Regen. 1986; 1: 37-40
  • 3 Dellon AL. Wound healing in nerve. Clin Plast Surg 1990; 17 (03) 545-570
  • 4 Nampo H, Masaki H, Noma H. An ultrastructural study of sensory nerve endings after neurorrhaphy. J Reconstr Microsurg 1991; 7: 363
  • 5 Höke A, Redett R, Hameed H. et al. Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 2006; 26 (38) 9646-9655
  • 6 Sunderland S. The intraneural topography of the radial, median and ulnar nerves. Brain 1945; 68: 243-299
  • 7 Freilinger G, Gruber H, Holle J, Mandl H. Zur methodik der “senso-motorisch” differenzierten Faszikel-naht peripherer nerven. Handchirurgie 1975; 7 (03) 133-137
  • 8 Hakstian RW. Funicular orientation by direct stimulation. An aid to peripheral nerve repair. J Bone Joint Surg Am 1968; 50 (06) 1178-1186
  • 9 Gruber H, Freilinger G, Holle J, Mandl H. Identification of motor and sensory funiculi in cut nerves and their selective reunion. Br J Plast Surg 1976; 29 (01) 70-73
  • 10 Hietanen M, Pelto-Huikko M, Rechardt L. Immunocytochemical study of the relations of acetylcholinesterase, enkephalin-, substance P-, choline acetyltransferase- and calcitonin gene-related peptide-immunoreactive structures in the ventral horn of rat spinal cord. Histochemistry 1990; 93 (05) 473-477
  • 11 Kato H, Minami A, Kobayashi M, Takahara M, Ogino T. Functional results of low median and ulnar nerve repair with intraneural fascicular dissection and electrical fascicular orientation. J Hand Surg Am 1998; 23 (03) 471-482
  • 12 Gual Jr JS. Electrical fascicle identification as an adjunct to nerve repair. J Hand Surg Am 1983; 8 (03) 289-296
  • 13 Hoffmann P. Beitrage zur Kenntnis der menschlichen Reflex emit besonderer Berucksichtigung der elektrichen. Erscheinnungen. Arch-Physol 1910; 1: 223-246
  • 14 Palmieri RM, Ingersoll CD, Hoffman MA. The Hoffmann reflex: methodologic considerations and applications for use in sports medicine and athletic training research. J Athl Train 2004; 39 (03) 268-277
  • 15 Hattori Y, Doi K, Kaneko K, Heong TS. Intraoperative measurement of choline acetyltransferase activity to evaluate the functional status of donor nerve during reinnervated free muscle transfer: a preliminary report. J Hand Surg Am 1998; 23 (06) 1034-1037
  • 16 Riley DA, Sanger JR, Matloub HS, Yousif NJ, Bain JL, Moore GH. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities. Brain Res 1988; 453 (1-2) 79-88
  • 17 Karnovsky MJ, Roots L. Adirectcoloring” thiocholine method for cholinesterases. J Histochem Cytochem 1964; 12: 219-221
  • 18 Gruber H, Zenker W. Acetylcholinesterase: histochemical differentiation between motor and sensory nerve fibres. Brain Res 1973; 51: 207-214
  • 19 He YS, Zhong SZ. HeYS. Acetylcholinesterase: a histochemical identification of motor and sensory fascicles in human peripheral nerve and its use during operation. Plast Reconstr Surg 1988; 82 (01) 125-132
  • 20 Hattori Y, Doi K, Fukushima S, Kaneko K. The diagnostic value of intraoperative measurement of choline acetyltransferase activity during brachial plexus surgery. J Hand Surg [Br] 2000; 25 (05) 509-511
  • 21 Glass JD, Culver DG, Levey AI, Nash NR. Very early activation of m-calpain in peripheral nerve during Wallerian degeneration. J Neurol Sci 2002; 196 (1-2) 9-20
  • 22 Meng X, Lu L, Wang H, Liu B. Differentiation between the motor and sensory fascicles of the peripheral nerves from adult rats using annexin V-CdTe-conjugated polymer. Neurol India 2011; 59 (03) 333-338
  • 23 Wang H, Ma F, Wang F, Liu D, Li X, Du S. Identification of motor and sensory fascicles in peripheral nerve trunk using immunohistochemistry and micro-Raman spectroscopy. J Trauma 2011; 71 (05) 1246-1251
  • 24 Xie S, Xiang B, Bu S. et al. Rapid identification of anterior and posterior root of cauda equina nerves by near-infrared diffuse reflectance spectroscopy. J Biomed Opt 2009; 14 (02) 024005
  • 25 Preliminary research of indentifying the property of nerve fiber by near-infrared spectroscopy and cluster analysis-Acta Universitatis Medicinalis Nanjing (NaturalScience) 2006年05期. http://en.cnki.com.cn/Article_en/CJFDTOTALNJYK200605003.htm. Accessed May 14, 2019
  • 26 Hattori Y, Doi K. Radioisotope technique to evaluate the motor functional status of donor nerve for upper extremity reconstruction. Tech Hand Up Extrem Surg 2004; 8 (03) 189-192
  • 27 Ganel A, Farine I, Aharonson Z, Horoszowski H, Melamed R, Rimon S. Intraoperative nerve fascicle identification using choline acetyltransferase: a preliminary report. Clin Orthop Relat Res 1982; (165) 228-232
  • 28 Stober R, Hesse G. [Use of evoked potentials for the intraoperative differentiation of motor and sensory fascicles]. Handchir Mikrochir Plast Chir Organ Deutschsprachigen Arbeitsgemeinschaft Handchir Organ Deutschsprachigen Arbeitsgemeinschaft Mikrochir Peripher Nerven Gefasse Organ V. 1983; 15: 232-234
  • 29 Turkof E, Jurasch N, Knolle E. et al. Motor evoked potentials enable differentiation between motor and sensory branches of peripheral nerves in animal experiments. J Reconstr Microsurg 2006; 22 (07) 525-532
  • 30 Skorpil M, Karlsson M, Nordell A. Peripheral nerve diffusion tensor imaging. Magn Reson Imaging 2004; 22 (05) 743-745
  • 31 Hiltunen J, Suortti T, Arvela S, Seppä M, Joensuu R, Hari R. Diffusion tensor imaging and tractography of distal peripheral nerves at 3 T. Clin Neurophysiol 2005; 116 (10) 2315-2323
  • 32 Takagi T, Nakamura M, Yamada M. et al. Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. Neuroimage 2009; 44 (03) 884-892