CC BY-NC-ND 4.0 · Organic Materials 2020; 02(02): 173-181
DOI: 10.1055/s-0040-1709999
Original Article
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

Effect of Extended π-Conjugation of Central Cores on Photovoltaic Properties of Asymmetric Wide-Bandgap Nonfullerene Acceptors

Tian Xia
a  School of Chemistry, Beihang University, Beijing 100191,China
,
Chao Li
a  School of Chemistry, Beihang University, Beijing 100191,China
,
Hwa Sook Ryu
b  Department of Chemistry, College of Science, Korea University, Seoul 136–713, Republic of Korea
,
Xiaobo Sun
a  School of Chemistry, Beihang University, Beijing 100191,China
,
b  Department of Chemistry, College of Science, Korea University, Seoul 136–713, Republic of Korea
,
a  School of Chemistry, Beihang University, Beijing 100191,China
› Author Affiliations
Funding Information This work was financially supported by the National Natural Science Foundation of China (NSFC: 21734001, 51825301, 21674007). H.Y.W. is grateful for the financial support from the National Research Foundation (NRF) of Korea (NRF-2016M1A2A2940911, 2019R1A6A1A11044070).
Further Information

Publication History

Received: 02 February 2020

Accepted after revision: 12 March 2020

Publication Date:
27 May 2020 (online)


Abstract

Tremendous efforts have been dedicated to develop low-bandgap nonfullerene acceptors (NFAs) for organic solar cells (OSCs). In comparison, the NFAs with a wide bandgap (WBG) have received less attention. Here, three novel acceptor–donor–acceptor type WBG NFAs (TPT-T, TPTT-T, and TPTTT-T) have been designed and synthesized with different fused central cores by varying the π-conjugation length and molecular structures, which all exhibit wide optical bandgaps over 1.8 eV. The successive π-conjugation extension of electron-donating central cores (from TPT-T to TPTT-T and to TPTTT-T) induces red-shifted absorption spectra, lower optical bandgap, and enhanced electron mobility simultaneously. As a result, the optimized OSC devices based on TPTTT-T:PBT1-C achieved a power conversion efficiency of 7.42%, which was higher than those of PBT1-C:TPTT-T (6.93%) and PBT1-C:TPT-T (6.11%) based devices. These results indicate that extending the molecular π-conjugation structure is an effective strategy to design efficient NFAs for OSCs.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1709999.


Supporting Information

 
  • References

  • 1 Li G, Zhu R, Yang Y. Nat. Photonics 2012; 6: 153
  • 2 Heeger AJ. Adv. Mater. 2014; 26: 10
  • 3 Cai Y, Huo L, Sun Y. Adv. Mater. 2017; 29: 1605437
  • 4 Fu H, Wang Z, Sun Y. Solar RRL 2018; 2: 1700158
  • 5 Xie Y, Huo L, Fan B, Fu H, Cai Y, Zhang L, Li Z, Wang Y, Ma W, Chen Y, Sun Y. Adv. Funct. Mater. 2018; 28: 1800627
  • 6 Fu H, Wang Z, Sun Y. Angew. Chem. Int. Ed. 2019; 58: 4442
  • 7 Xia T, Cai Y, Fu H, Sun Y. Sci. China Chem. 2019; 62: 662
  • 8 Günes S, Neugebauer H, Sariciftci NS. Chem. Rev. 2007; 107: 1324
  • 9 Huo L, Liu T, Sun X, Cai Y, Heeger AJ, Sun Y. Adv. Mater. 2015; 27: 2938
  • 10 Huo L, Liu T, Fan B, Zhao Z, Sun X, Wei D, Yu M, Liu Y, Sun Y. Adv. Mater. 2015; 27: 6969
  • 11 Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem. Rev. 2016; 116: 7397
  • 12 Xie Y, Yang F, Li Y, Uddin MA, Bi P, Fan B, Cai Y, Hao X, Woo HY, Li W, Liu F, Sun Y. Adv. Mater. 2018; 30: 1803045
  • 13 Liu T, Troisi A. Adv. Mater. 2013; 25: 1038
  • 14 Yan C, Barlow S, Wang Z, Yan H, Jen AK. Y, Marder SR, Zhan X. Nat. Rev. Mater. 2018; 3: 18003
  • 15 Lin Y, Zhan X. Mater. Horiz. 2014; 1: 470
  • 16 Cheng P, Li G, Zhan X, Yang Y. Nat. Photonics 2018; 12: 131
  • 17 Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, Zhan X. Adv. Mater. 2015; 27: 1170
  • 18 Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su C-J, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X. J. Am. Chem. Soc. 2016; 138: 2973
  • 19 Sun D, Meng D, Cai Y, Fan B, Li Y, Jiang W, Huo L, Sun Y, Wang Z. J. Am. Chem. Soc. 2015; 137: 11156
  • 20 Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ. J. Am. Chem. Soc. 2016; 138: 375
  • 21 Meng D, Fu H, Xiao C, Meng X, Winands T, Ma W, Wei W, Fan B, Huo L, Doltsinis NL, Li Y, Sun Y, Wang Z. J. Am. Chem. Soc. 2016; 138: 10184
  • 22 Liang N, Zhu X, Zheng Z, Meng D, Liu G, Zhang J, Li S, Li Y, Hou J, Hu B, Wang Z. Chem. Mater. 2019; 31: 3636
  • 23 Lin H, Chen S, Li Z, Lai JY. L, Yang G, McAfee T, Jiang K, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Adv. Mater. 2015; 27: 7299
  • 24 Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv. Mater. 2016; 28: 9423
  • 25 Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J. Am. Chem. Soc. 2017; 139: 7148
  • 26 Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J. Adv. Mater. 2016; 28: 8283
  • 27 Cui Y, Yao H, Hong L, Zhang T, Xu Y, Xian K, Gao B, Qin J, Zhang J, Wei Z, Hou J. Adv. Mater. 2019; 31: 1808356
  • 28 Zhang H, Yao H, Hou J, Zhu J, Zhang J, Li W, Yu R, Gao B, Zhang S, Hou J. Adv. Mater. 2018; 30: 1800613
  • 29 Xie D, Liu T, Gao W, Zhong C, Huo L, Luo Z, Wu K, Xiong W, Liu F, Sun Y, Yang C. Solar RRL 2017; 1: 1700044
  • 30 Li C, Xie Y, Fan B, Han G, Yi Y, Sun Y. J. Mater. Chem. C 2018; 6: 4873
  • 31 Song J, Li C, Ye L, Koh C, Cai Y, Wei D, Woo HY, Sun Y. J. Mater. Chem. A 2018; 6: 18847
  • 32 Li C, Song J, Ye L, Koh C, Weng K, Fu H, Cai Y, Xie Y, Wei D, Woo HY, Sun Y. Solar RRL 2019; 3: 1800246
  • 33 Li C, Song J, Cai Y, Han G, Zheng W, Yi Y, Ryu HS, Woo HY, Sun Y. J. Energy Chem. 2020; 40: 144
  • 34 Li C, Xia T, Song J, Fu H, Ryu HS, Weng K, Ye L, Woo HY, Sun Y. J. Mater. Chem. A 2019; 7: 1435
  • 35 Ye L, Xie Y, Xiao Y, Song J, Li C, Fu H, Weng K, Lu X, Tan S, Sun Y. J. Mater. Chem. A 2019; 7: 8055
  • 36 Xie R, Ying L, Liao H, Chen Z, Huang F, Cao Y. Front. Chem. 2018; 6: 303
  • 37 Wang J-L, Liu K-K, Hong L, Ge G-Y, Zhang C, Hou J. ACS Energy Lett. 2018; 3: 2967
  • 38 Chang S-L, Cao F-Y, Huang W-C, Huang P-K, Huang K-H, Hsu C-S, Cheng Y-J. ACS Energy Lett. 2018; 3: 1722
  • 39 Liu Y, Zuo L, Shi X, Jen AK. Y, Ginger DS. ACS Energy Lett. 2018; 3: 2396
  • 40 Li Y, Lin J-D, Che X, Qu Y, Liu F, Liao L-S, Forrest SR. J. Am. Chem. Soc. 2017; 139: 17114
  • 41 Zhang G, Zhao J, Chow PC. Y, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem. Rev. 2018; 118: 3447
  • 42 Zhai W, Tang A, Xiao B, Wang X, Chen F, Zhou E. Sci. Bull. 2018; 63: 845
  • 43 Huang C, Liao X, Gao K, Zuo L, Lin F, Shi X, Li C-Z, Liu H, Li X, Liu F, Chen Y, Chen H, Jen AK. Y. Chem. Mater. 2018; 30: 5429
  • 44 Shi X, Zuo L, Jo SB, Gao K, Lin F, Liu F, Jen AK. Y. Chem. Mater. 2017; 29: 8369
  • 45 Shi X, Liao X, Gao K, Zuo L, Chen J, Zhao J, Liu F, Chen Y, Jen AK. Y. Adv. Funct. Mater. 2018; 28: 1802324
  • 46 Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv. Mater. 2018; 30: 1707150
  • 47 Wang J, Wang W, Wang X, Wu Y, Zhang Q, Yan C, Ma W, You W, Zhan X. Adv. Mater. 2017; 29: 1702125
  • 48 Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv. Mater. 2017; 29: 1700144
  • 49 Li Y, Zhong L, Gautam B, Bin H-J, Lin J-D, Wu F-P, Zhang Z, Jiang Z-Q, Zhang Z-G, Gundogdu K, Li Y, Liao L-S. Energy Environ. Sci. 2017; 10: 1610
  • 50 Li W, Ye L, Li S, Yao H, Ade H, Hou J. Adv. Mater. 2018; 30: 1707170
  • 51 Kan B, Zhang J, Liu F, Wan X, Li C, Ke X, Wang Y, Feng H, Zhang Y, Long G, Friend RH, Bakulin AA, Chen Y. Adv. Mater. 2018; 30: 1704904
  • 52 Zhang Y, Kan B, Sun Y, Wang Y, Xia R, Ke X, Yi Y-Q-Q, Li C, Yip H-L, Wan X, Cao Y, Chen Y. Adv. Mater. 2018; 30: 1707508
  • 53 Zuo L, Yu J, Shi X, Lin F, Tang W, Jen AK. Y. Adv. Mater. 2017; 29: 1702547
  • 54 Shi X, Chen J, Gao K, Zuo L, Yao Z, Liu F, Tang J, Jen AK. Y. Adv. Energy Mater. 2018; 8: 1702831
  • 55 Zuo L, Shi X, Jo SB, Liu Y, Lin F, Jen AK. Y. Adv. Mater. 2018; 30: 1706816
  • 56 Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew. Chem. Int. Ed. 2017; 56: 3045
  • 57 He B, Yang B, Kolaczkowski MA, Anderson CA, Klivansky LM, Chen TL, Brady MA, Liu Y. ACS Energy Lett. 2018; 3: 1028
  • 58 Gong Y, Kan Z, Xu W, Wang Y, AlShammari SH, Laquai F, Lai W-Y, Huang W. Solar RRL 2018; 2: 1800120
  • 59 Xiao B, Tang A, Zhang J, Mahmood A, Wei Z, Zhou E. Adv Energy Mater. 2017; 7: 1602269
  • 60 Tang A, Xiao B, Wang Y, Gao F, Tajima K, Bin H, Zhang Z-G, Li Y, Wei Z, Zhou E. Adv. Funct. Mater. 2018; 28: 1704507
  • 61 Tang A, Xiao B, Chen F, Zhang J, Wei Z, Zhou E. Adv. Energy Mater. 2018; 8: 1801582
  • 62 Tang A, Song W, Xiao B, Guo J, Min J, Ge Z, Zhang J, Wei Z, Zhou E. Chem. Mater. 2019; 31: 3941
  • 63 Jia J, Zheng N, Wang Z, Huang Y, Duan C, Huang F, Cao Y. Sci. China Chem. 2017; 60: 1458
  • 64 Wang P, Fan H, Zhang C, Zhu X. Mater. Chem. Front. 2018; 2: 136
  • 65 Li C, Fu H, Xia T, Sun Y. Adv. Energy Mater. 2019; 9: 1900999
  • 66 Ko EY, Park GE, Lee JH, Kim HJ, Lee DH, Ahn H, Uddin MA, Woo HY, Cho MJ, Choi DH. ACS Appl. Mater. Interfaces 2017; 9: 8838
  • 67 Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Adv. Mater. 2018; 30: 1707353
  • 68 Faist MA, Shoaee S, Tuladhar S, Dibb GF. A, Foster S, Gong W, Kirchartz T, Bradley DD. C, Durrant JR, Nelson J. Adv. Energy Mater. 2013; 3: 744
  • 69 Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen JC. Adv. Funct. Mater. 2004; 14: 38