CC BY-NC-ND 4.0 · Eur J Dent 2020; 14(04): 517-524
DOI: 10.1055/s-0040-1709947
Original Article

Resistance to Fracture of Zirconia Abutments with Different Angulations: Impact of Implant Platform Diameter

Samah Saker
1   Fixed Prosthodontics Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
,
Walid AL-Zordk
1   Fixed Prosthodontics Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
,
Mutlu Özcan
2   University of Zurich, Center of Dental Medicine, Division of Dental Biomaterials, Clinic for Reconstructive Dentistry, Zurich, Switzerland
› Author Affiliations

Abstract

Objective The aim of this study was to assess the impact of implant platform diameters on ultimate force to failure of zirconia abutments with different angulation.

Materials and Methods Forty-two zirconia abutments with either 0 degree (ST) or 15-degree (AN) angulation were assembled on tapered internal connection titanium implants (Direct's Legacy; 13 mm Implant Direct, LLC, Las Vegas, United States) with a platform diameter of Ø3.0, Ø3.5, and Ø4.5 mm (14 per group). Zirconia crowns (Ceramill Zolid; Amann Girrbach GmbH) were fabricated and cemented using self-adhesive resin cement (MaxCem Elite, Kerr). The specimens were thermomechanically loaded (TCML= 6,000 cycles of 5 to 50°C for 2 minutes/cycle followed by cyclic loading 600,000 cycles) followed by static loading until fracture. The data of load (N) at which fracture occurred were statistically analyzed by using Kruskal–Wallis analysis of variance and Mann–Whitney U tests at 5% significance level.

Results Higher load to fracture was reported for zirconia crowns in straight abutments groups and a platform of 4.5, 3.5, and 3 mm diameter was 438.2± 85.4, 345.5± 71.3, and 331.1± 59.1 N, respectively. However, the groups restored with zirconia crowns in angulated abutments groups and a platform of 4.5, 3.5, or 3 mm diameter showed a fracture load of 411.4 ± 49.8, 354.2 ± 52.5, and 302.8 ± 52.5 N, respectively.

Conclusion Straight and angulated zirconia abutments presented similar load to fracture on 3 and 3.5 mm platform diameters yet being significantly less for 4.5 mm diameter.



Publication History

Article published online:
09 July 2020

© .

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Kniha K, Modabber A, Kniha H, Möhlhenrich SC, Hölzle F, Milz S. Dimensions of hard and soft tissue around adjacent, compared with single-tooth, zirconia implants. Br J Oral Maxillofac Surg 2018; 56 (01) 43-47
  • 2 Gao E, Hei WH, Park JC. et al. Bone-level implants placed in the anterior maxilla: an open-label, single-arm observational study. J Periodontal Implant Sci 2017; 47 (05) 312-327
  • 3 den L Hartog, Meijer HJA, Vissink A, Raghoebar GM. Anterior single implants with different neck designs: 5 year results of a randomized clinical trial. Clin Implant Dent Relat Res 2017; 19 (04) 717-724
  • 4 Arunyanak SP, Pollini A, Ntounis A, Morton D. Clinician assessments and patient perspectives of single-tooth implant restorations in the esthetic zone of the maxilla: a systematic review. J Prosthet Dent 2017; 118 (01) 10-17
  • 5 Spies BC, Witkowski S, Vach K, Kohal RJ. Clinical and patient-reported outcomes of zirconia-based implant fixed dental prostheses: results of a prospective case series 5 years after implant placement. Clin Oral Implants Res 2018; 29 (01) 91-99
  • 6 Andersson B, Taylor A, Lang BR. et al. Alumina ceramic implant abutments used for single-tooth replacement: a prospective 1- to 3-year multicenter study. Int J Prosthodont 2001; 14 (05) 432-438
  • 7 Elsayed A, Wille S, Al-Akhali M, Kern M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin Oral Implants Res 2018; 29 (01) 20-27
  • 8 Yu SJ, Shan WL, Liu YX, Huang XY, Zhu GX. Effects of four different crown materials on the peri-implant clinical parameters and composition of peri-implant crevicular fluid. J Oral Implantol 2017; 43 (05) 337-344
  • 9 Prestipino V, Ingber A. Esthetic high-strength implant abutments. Part I. J Esthet Dent 1993; 5 (01) 29-36
  • 10 Prestipino V, Ingber A. Esthetic high-strength implant abutments. Part II. J Esthet Dent 1993; 5 (02) 63-68
  • 11 Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20 (01) 1-25
  • 12 Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Schärer P. Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study. Int J Prosthodont 2004; 17 (03) 285-290
  • 13 Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992; 68 (02) 322-326
  • 14 Heydecke G, Sierraalta M, Razzoog ME. Evolution and use of aluminum oxide single-tooth implant abutments: a short review and presentation of two cases. Int J Prosthodont 2002; 15 (05) 488-493
  • 15 Watkin A, Kerstein RB. Improving darkened anterior peri-implant tissue color with zirconia custom implant abutments. Compend Contin Educ Dent 2008; 29 (04) 238-240, 242
  • 16 Sethi A, Kaus T, Sochor P, Axmann-Krcmar D, Chanavaz M. Evolution of the concept of angulated abutments in implant dentistry: 14-year clinical data. Implant Dent 2002; 11 (01) 41-51
  • 17 Nothdurft FP, Doppler KE, Erdelt KJ, Knauber AW, Pospiech PR. Influence of artificial aging on the load-bearing capability of straight or angulated zirconia abutments in implant/tooth-supported fixed partial dentures. Int J Oral Maxillofac Implants 2010; 25 (05) 991-998
  • 18 Sethi A, Kaus T, Sochor P. The use of angulated abutments in implant dentistry: five-year clinical results of an ongoing prospective study. Int J Oral Maxillofac Implants 2000; 15 (06) 801-810
  • 19 Boggan RS, Strong JT, Misch CE, Bidez MW. Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants. J Prosthet Dent 1999; 82 (04) 436-440
  • 20 Duyck J, Van Oosterwyck H, Vander Sloten J, De Cooman M, Puers R, Naert I. Magnitude and distribution of occlusal forces on oral implants supporting fixed prostheses: an in vivo study. Clin Oral Implants Res 2000; 11 (05) 465-475
  • 21 Ha CY, Lim YJ, Kim MJ, Choi JH. The influence of abutment angulation on screw loosening of implants in the anterior maxilla. Int J Oral Maxillofac Implants 2011; 26 (01) 45-55
  • 22 Thulasidas S, Givan DA, Lemons JE, O’Neal SJ, Ramp LC, Liu PR. Influence of implant angulation on the fracture resistance of zirconia abutments. J Prosthodont 2015; 24 (02) 127-135
  • 23 Ellakwa A, Raj T, Deeb S, Ronaghi G, Martin FE, Klineberg I. Influence of implant abutment angulations on the fracture resistance of overlaying CAM-milled zirconia single crowns. Aust Dent J 2011; 56 (02) 132-140
  • 24 Al-Johany SS, Al Amri MD, Alsaeed S, Alalola B. Dental implant length and diameter: a proposed classification scheme. J Prosthodont 2017; 26 (03) 252-260
  • 25 Att W, Yajima ND, Wolkewitz M, Witkowski S, Strub JR. Influence of preparation and wall thickness on the resistance to fracture of zirconia implant abutments. Clin Implant Dent Relat Res 2012; 14 (Suppl 1) e196-e203
  • 26 Mitsias M, Koutayas SO, Wolfart S, Kern M. Influence of zirconia abutment preparation on the fracture strength of single implant lithium disilicate crowns after chewing simulation. Clin Oral Implants Res 2014; 25 (06) 675-682
  • 27 Nguyen HQ, Tan KB, Nicholls JI. Load fatigue performance of implant-ceramic abutment combinations. Int J Oral Maxillofac Implants 2009; 24 (04) 636-646
  • 28 Shabanpour R, Mousavi N, Ghodsi S, Alikhasi M. Comparative evaluation of fracture resistance and mode of failure of zirconia and titanium abutments with different diameters. J Contemp Dent Pract 2015; 16 (08) 613-618
  • 29 Stimmelmayr M, Sagerer S, Erdelt K, Beuer F. In vitro fatigue and fracture strength testing of one-piece zirconia implant abutments and zirconia implant abutments connected to titanium cores. Int J Oral Maxillofac Implants 2013; 28 (02) 488-493
  • 30 Kim JS, Raigrodski AJ, Flinn BD, Rubenstein JE, Chung KH, Mancl LA. In vitro assessment of three types of zirconia implant abutments under static load. J Prosthet Dent 2013; 109 (04) 255-263
  • 31 Basílio MdeA, Cardoso KV, Antonio SG, Rizkalla AS, Santos Junior GC, Arioli Filho JN. Effects of artificial aging conditions on yttria-stabilized zirconia implant abutments. J Prosthet Dent 2016; 116 (02) 277-285
  • 32 Joda T, Bürki A, Bethge S, Brägger U, Zysset P. Stiffness, strength, and failure modes of implant-supported monolithic lithium disilicate crowns: influence of titanium and zirconia abutments. Int J Oral Maxillofac Implants 2015; 30 (06) 1272-1279
  • 33 Sghaireen MG. Fracture resistance and mode of failure of ceramic versus titanium implant abutments and single implant-supported restorations. Clin Implant Dent Relat Res 2015; 17 (03) 554-561
  • 34 Mish C. Dental Implant Prosthetics. 2nd edition. Mosby Inc; 2015: 393-413
  • 35 Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic systems: laboratory and clinical performance. Dent Clin North Am 2011; 55 (02) 333-352, ix
  • 36 Nothdurft FP, Doppler KE, Erdelt KJ, Knauber AW, Pospiech PR. Fracture behavior of straight or angulated zirconia implant abutments supporting anterior single crowns. Clin Oral Investig 2011; 15 (02) 157-163
  • 37 Koc D, Dogan A, Bek B. Bite force and influential factors on bite force measurements: a literature review. Eur J Dent 2010; 4 (02) 223-232
  • 38 Jörnéus L, Jemt T, Carlsson L. Loads and designs of screw joints for single crowns supported by osseointegrated implants. Int J Oral Maxillofac Implants 1992; 7 (03) 353-359
  • 39 Kiliaridis S, Kjellberg H, Wenneberg B, Engström C. The relationship between maximal bite force, bite force endurance, and facial morphology during growth. A cross-sectional study. Acta Odontol Scand 1993; 51 (05) 323-331
  • 40 Gehrke P, Dhom G, Brunner J, Wolf D, Degidi M, Piattelli A. Zirconium implant abutments: fracture strength and influence of cyclic loading on retaining-screw loosening. Quintessence Int 2006; 37 (01) 19-26
  • 41 Aramouni P, Zebouni E, Tashkandi E, Dib S, Salameh Z, Almas K. Fracture resistance and failure location of zirconium and metallic implant abutments. J Contemp Dent Pract 2008; 9 (07) 41-48
  • 42 Yildirim M, Fischer H, Marx R, Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. J Prosthet Dent 2003; 90 (04) 325-331
  • 43 Ferrario VF, Sforza C, Serrao G, Dellavia C, Tartaglia GM. Single tooth bite forces in healthy young adults. J Oral Rehabil 2004; 31 (01) 18-22
  • 44 Nishigawa K, Bando E, Nakano M. Quantitative study of bite force during sleep associated bruxism. J Oral Rehabil 2001; 28 (05) 485-491
  • 45 Saker S, El-Shahat S, Ghazy M. Fracture resistance of straight and angulated zirconia implant abutments supporting anterior three-unit lithium disilicate fixed dental prostheses. Int J Oral Maxillofac Implants 2016; 31 (06) 1240-1246
  • 46 Heydecke G, Butz F, Hussein A, Strub JR. Fracture strength after dynamic loading of endodontically treated teeth restored with different post-and-core systems. J Prosthet Dent 2002; 87 (04) 438-445
  • 47 Kerstein RB, Radke J. A comparison of fabrication precision and mechanical reliability of 2 zirconia implant abutments. Int J Oral Maxillofac Implants 2008; 23 (06) 1029-1036
  • 48 Sailer I, Sailer T, Stawarczyk B, Jung RE, Hämmerle CH. In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections. Int J Oral Maxillofac Implants 2009; 24 (05) 850-858
  • 49 Sailer I, Philipp A, Zembic A, Pjetursson BE, Hämmerle CH, Zwahlen M. A systematic review of the performance of ceramic and metal implant abutments supporting fixed implant reconstructions. Clin Oral Implants Res 2009; 20 (Suppl 4) 4-31
  • 50 Alsahhaf A, Spies BC, Vach K, Kohal RJ. Fracture resistance of zirconia-based implant abutments after artificial long-term aging. J Mech Behav Biomed Mater 2017; 66: 224-232