Semin Musculoskelet Radiol 2020; 24(03): 262-276
DOI: 10.1055/s-0040-1709484
Review Article

Stress Injuries of the Spine in Sports

Jenn Shiunn Wong
1   Department of Radiology, Derriford Hospital, University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
,
Radhesh Lalam
2   Department of Radiology, The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
,
Victor N. Cassar-Pullicino
2   Department of Radiology, The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
,
Prudencia N.M. Tyrrell
,
Jaspreet Singh
2   Department of Radiology, The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
› Author Affiliations

Abstract

Spine sports stress injuries account for a significant amount of time loss at play in athletes, particularly if left unrecognized and allowed to progress. Spondylolysis makes up most of these stress injuries. This article focuses on spondylolysis, bringing together discussion from the literature on its pathomechanics and the different imaging modalities used in its diagnosis. Radiologists should be aware of the limitations and more importantly the roles of different imaging modalities in guiding and dictating the management of spondylolysis. Other stress-related injuries in the spine are also discussed including but not limited to pedicle fracture and apophyseal ring injury.



Publication History

Article published online:
28 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • Reference

  • 1 Swärd L, Hellström M, Jacobsson B, Nyman R, Peterson L. Disc degeneration and associated abnormalities of the spine in elite gymnasts. A magnetic resonance imaging study. Spine 1991; 16 (04) 437-443
  • 2 Orchard JW, Kountouris A, Sims K. Incidence and prevalence of elite male cricket injuries using updated consensus definitions. Open Access J Sports Med 2016; 7: 187-194
  • 3 Guermazi A, Hayashi D, Jarraya M. , et al. Sports injuries at the Rio de Janeiro 2016 Summer Olympics: use of diagnostic imaging services. Radiology 2018; 287 (03) 922-932
  • 4 Roche MB, Rowe GG. The incidence of separate neural arch and coincident bone variations; a survey of 4,200 skeletons. Anat Rec 1951; 109 (02) 233-252
  • 5 Sakai T, Sairyo K, Takao S, Nishitani H, Yasui N. Incidence of lumbar spondylolysis in the general population in Japan based on multidetector computed tomography scans from two thousand subjects. Spine 2009; 34 (21) 2346-2350
  • 6 Simper LB. Spondylolysis in Eskimo skeletons. Acta Orthop Scand 1986; 57 (01) 78-80
  • 7 Soler T, Calderón C. The prevalence of spondylolysis in the Spanish elite athlete. Am J Sports Med 2000; 28 (01) 57-62
  • 8 Rossi F, Dragoni S. Lumbar spondylolysis: occurrence in competitive athletes. Updated achievements in a series of 390 cases. J Sports Med Phys Fitness 1990; 30 (04) 450-452
  • 9 Micheli LJ, Wood R. Back pain in young athletes. Significant differences from adults in causes and patterns. Arch Pediatr Adolesc Med 1995; 149 (01) 15-18
  • 10 Fournier PE, Rizzoli R, Slosman DO, Theintz G, Bonjour JP. Asynchrony between the rates of standing height gain and bone mass accumulation during puberty. Osteoperosis Int 1997; 7 (06) 525-532
  • 11 Cyron BM, Hutton WC. The fatigue strength of the lumbar neural arch in spondylolysis. J Bone Joint Surg Br 1978; 60-B (02) 234-238
  • 12 Dietrich M, Kurowski P. The importance of mechanical factors in the etiology of spondylolysis. A model analysis of loads and stresses in human lumbar spine. Spine 1985; 10 (06) 532-542
  • 13 Sairyo K, Katoh S, Takata Y. , et al. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents: a clinical and biomechanical study. Spine 2006; 31 (02) 206-211
  • 14 Terai T, Sairyo K, Goel VK. , et al. Spondylolysis originates in the ventral aspect of the pars interarticularis: a clinical and biomechanical study. J Bone Joint Surg Br 2010; 92 (08) 1123-1127
  • 15 Dunn AJ, Campbell RS, Mayor PE, Rees D. Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis. Skeletal Radiol 2008; 37 (05) 443-450
  • 16 Ogilvie JW, Sherman J. Spondylolysis in Scheuermann's disease. Spine 1987; 12 (03) 251-253
  • 17 Ward CV, Latimer B. Human evolution and the development of spondylolysis. Spine 2005; 30 (16) 1808-1814
  • 18 Ward CV, Latimer B, Alander DH. , et al. Radiographic assessment of lumbar facet distance spacing and spondylolysis. Spine 2007; 32 (02) E85-E88
  • 19 Sagi HC, Jarvis JG, Uhthoff HK. Histomorphic analysis of the development of the pars interarticularis and its association with isthmic spondylolysis. Spine 1998; 23 (15) 1635-1639 ; discussion 1640
  • 20 Sarvazyan A, Rudenko O, Aglyamov S, Emelianov S. Muscle as a molecular machine for protecting joints and bones by absorbing mechanical impacts. Med Hypotheses 2014; 83 (01) 6-10
  • 21 Cheung KK, Dhawan RT, Wilson LF, Peirce NS, Rajeswaran G. Pars interarticularis injury in elite athletes—the role of imaging in diagnosis and management. Eur J Radiol 2018; 108: 28-42
  • 22 Kumar DS, Fotiadou A, Lalam R. , et al. Ossicles of lumbar articular facets: normal variant or spondylolytic variant?. Skeletal Radiol 2012; 41 (12) 1559-1566
  • 23 Kaup M, Wichmann JL, Scholtz JE. , et al. Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology 2016; 280 (02) 510-519
  • 24 Yamashita K, Sakai T, Takata Y. , et al. Utility of STIR-MRI in detecting the pain generator in asymmetric bilateral pars fracture: a report of 5 cases. Neurol Med Chir (Tokyo) 2018; 58 (02) 91-95
  • 25 Hollenberg GM, Beattie PF, Meyers SP, Weinberg EP, Adams MJ. Stress reactions of the lumbar pars interarticularis: the development of a new MRI classification system. Spine 2002; 27 (02) 181-186
  • 26 Campbell RS, Grainger AJ, Hide IG, Papastefanou S, Greenough CG. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI. Skeletal Radiol 2005; 34 (02) 63-73
  • 27 Johnson DW, Farnum GN, Latchaw RE, Erba SM. MR imaging of the pars interarticularis. AJR Am J Roentgenol 1989; 152 (02) 327-332
  • 28 Saifuddin A, Burnett SJ. The value of lumbar spine MRI in the assessment of the pars interarticularis. Clin Radiol 1997; 52 (09) 666-671
  • 29 Leone A, Cianfoni A, Cerase A, Magarelli N, Bonomo L. Lumbar spondylolysis: a review. Skeletal Radiol 2011; 40 (06) 683-700
  • 30 Sherif H, Mahfouz AE. Epidural fat interposition between dura mater and spinous process: a new sign for the diagnosis of spondylolysis on MR imaging of the lumbar spine. Eur Radiol 2004; 14 (06) 970-973
  • 31 Ang EC, Robertson AF, Malara FA. , et al. Diagnostic accuracy of 3-T magnetic resonance imaging with 3D T1 VIBE versus computer tomography in pars stress fracture of the lumbar spine. Skeletal Radiol 2016; 45 (11) 1533-1540
  • 32 Finkenstaedt T, Siriwanarangsun P, Achar S. , et al. Ultrashort time-to-echo magnetic resonance imaging at 3 T for the detection of spondylolysis in cadaveric spines: comparison With CT. Invest Radiol 2019; 54 (01) 32-38
  • 33 Masci L, Pike J, Malara F, Phillips B, Bennell K, Brukner P. Use of the one-legged hyperextension test and magnetic resonance imaging in the diagnosis of active spondylolysis. Br J Sports Med 2006; 40 (11) 940-946 ; discussion 946
  • 34 Bellah RD, Summerville DA, Treves ST, Micheli LJ. Low-back pain in adolescent athletes: detection of stress injury to the pars interarticularis with SPECT. Radiology 1991; 180 (02) 509-512
  • 35 Zukotynski K, Curtis C, Grant FD, Micheli L, Treves ST. The value of SPECT in the detection of stress injury to the pars interarticularis in patients with low back pain. J Orthop Surg Res 2010; 5: 13-13
  • 36 Anderson K, Sarwark JF, Conway JJ, Logue ES, Schafer MF. Quantitative assessment with SPECT imaging of stress injuries of the pars interarticularis and response to bracing. J Pediatr Orthop 2000; 20 (01) 28-33
  • 37 Sairyo K, Sakai T, Yasui N. Conservative treatment of lumbar spondylolysis in childhood and adolescence: the radiological signs which predict healing. J Bone Joint Surg Br 2009; 91 (02) 206-209
  • 38 Sairyo K, Sakai T, Yasui N, Dezawa A. Conservative treatment for pediatric lumbar spondylolysis to achieve bone healing using a hard brace: what type and how long? Clinical article. J Neurosurg Spine 2012; 16 (06) 610-614
  • 39 Sundell CG, Jonsson H, Ådin L, Larsén K. Stress fractures of pars interarticularis in adolescent athletes a classification system with MRI and CT enabling evaluation of the healing process. J Exerc Sports Orthop 2018; 5 (01) 1-6
  • 40 Fujii K, Katoh S, Sairyo K, Ikata T, Yasui N. Union of defects in the pars interarticularis of the lumbar spine in children and adolescents. The radiological outcome after conservative treatment. J Bone Joint Surg Br 2004; 86 (02) 225-231
  • 41 Arima H, Suzuki Y, Togawa D, Mihara Y, Murata H, Matsuyama Y. Low-intensity pulsed ultrasound is effective for progressive-stage lumbar spondylolysis with MRI high-signal change. Eur Spine J 2017; 26 (12) 3122-3128
  • 42 Gregory PL, Batt ME, Kerslake RW, Scammell BE, Webb JF. The value of combining single photon emission computerised tomography and computerised tomography in the investigation of spondylolysis. Eur Spine J 2004; 13 (06) 503-509
  • 43 van den Oever M, Merrick MV, Scott JH. Bone scintigraphy in symptomatic spondylolysis. J Bone Joint Surg Br 1987; 69 (03) 453-456
  • 44 Klein G, Mehlman CT, McCarty M. Nonoperative treatment of spondylolysis and grade I spondylolisthesis in children and young adults: a meta-analysis of observational studies. J Pediatr Orthop 2009; 29 (02) 146-156
  • 45 Iwamoto J, Takeda T, Wakano K. Returning athletes with severe low back pain and spondylolysis to original sporting activities with conservative treatment. Scand J Med Sci Sports 2004; 14 (06) 346-351
  • 46 Sairyo K, Katoh S, Sasa T. , et al. Athletes with unilateral spondylolysis are at risk of stress fracture at the contralateral pedicle and pars interarticularis: a clinical and biomechanical study. Am J Sports Med 2005; 33 (04) 583-590
  • 47 Alway P, Brooke-Wavell K, Langley B, King M, Peirce N. Incidence and prevalence of lumbar stress fracture in English County Cricket fast bowlers, association with bowling workload and seasonal variation. BMJ Open Sport Exerc Med 2019; 5 (01) e000529
  • 48 Robertson PA, Grobler LJ. Stress fracture of the pedicle. A late complication of posterolateral lumbar fusion. Spine 1993; 18 (07) 930-932
  • 49 Ganiyusufoglu AK, Onat L, Karatoprak O, Enercan M, Hamzaoglu A. Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine. Clin Radiol 2010; 65 (11) 902-907
  • 50 Ulmer JL, Elster AD, Mathews VP, Allen AM. Lumbar spondylolysis: reactive marrow changes seen in adjacent pedicles on MR images. AJR Am J Roentgenol 1995; 164 (02) 429-433
  • 51 Butler RW. The nature and significance of vertebral osteochondritis [Abridged]. Proc R Soc Med 1955; 48 (11) 895-902
  • 52 Huang PY, Yeh LR, Tzeng WS. , et al. Imaging features of posterior limbus vertebrae. Clin Imaging 2012; 36 (06) 797-802
  • 53 Epstein NE, Epstein JA. Limbus lumbar vertebral fractures in 27 adolescents and adults. Spine 1991; 16 (08) 962-966
  • 54 Rothfus WE, Goldberg AL, Deeb ZL, Daffner RH. MR recognition of posterior lumbar vertebral ring fracture. J Comput Assist Tomogr 1990; 14 (05) 790-794
  • 55 Sairyo K, Goel VK, Masuda A. , et al. Three-dimensional finite element analysis of the pediatric lumbar spine. Part I: pathomechanism of apophyseal bony ring fracture. Eur Spine J 2006; 15 (06) 923-929
  • 56 Akhaddar A, Belfquih H, Oukabli M, Boucetta M. Posterior ring apophysis separation combined with lumbar disc herniation in adults: a 10-year experience in the surgical management of 87 cases. J Neurosurg Spine 2011; 14 (04) 475-483
  • 57 Wu X, Ma W, Du H, Gurung K. A review of current treatment of lumbar posterior ring apophysis fracture with lumbar disc herniation. Eur Spine J 2013; 22 (03) 475-488
  • 58 Takata K, Inoue S, Takahashi K, Ohtsuka Y. Fracture of the posterior margin of a lumbar vertebral body. J Bone Joint Surg Am 1988; 70 (04) 589-594
  • 59 Koyama K, Nakazato K, Min S-K. , et al. Anterior limbus vertebra and intervertebral disk degeneration in Japanese collegiate gymnasts. Orthop J Sports Med 2013; 1 (03) 2325967113500222
  • 60 Swärd L, Hellström M, Jacobsson B, Karlsson L. Vertebral ring apophysis injury in athletes. Is the etiology different in the thoracic and lumbar spine?. Am J Sports Med 1993; 21 (06) 841-845
  • 61 Battié MC, Videman T, Gibbons LE, Fisher LD, Manninen H, Gill K. 1995 Volvo Award in clinical sciences. Determinants of lumbar disc degeneration. A study relating lifetime exposures and magnetic resonance imaging findings in identical twins. Spine 1995; 20 (24) 2601-2612
  • 62 Koyama K, Nakazato K, Min S. , et al. COL11A1 gene is associated with limbus vertebra in gymnasts. Int J Sports Med 2012; 33 (07) 586-590
  • 63 Mok FP, Samartzis D, Karppinen J, Luk KD, Fong DY, Cheung KM. ISSLS prize winner: prevalence, determinants, and association of Schmorl nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine 2010; 35 (21) 1944-1952
  • 64 Dar G, Masharawi Y, Peleg S. , et al. Schmorl's nodes distribution in the human spine and its possible etiology. Eur Spine J 2010; 19 (04) 670-675
  • 65 Pfirrmann CW, Resnick D. Schmorl nodes of the thoracic and lumbar spine: radiographic-pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology 2001; 219 (02) 368-374
  • 66 Abu-Ghanem S, Ohana N, Abu-Ghanem Y, Kittani M, Shelef I. Acute Schmorl node in dorsal spine: an unusual cause of a sudden onset of severe back pain in a young female. Asian Spine J 2013; 7 (02) 131-135
  • 67 Hellström M, Jacobsson B, Swärd L, Peterson L. Radiologic abnormalities of the thoraco-lumbar spine in athletes. Acta Radiol 1990; 31 (02) 127-132
  • 68 Witwit WA, Kovac P, Sward A. , et al. Disc degeneration on MRI is more prevalent in young elite skiers compared to controls. Knee Surg Sports Traumatol Arthrosc 2018; 26 (01) 325-332
  • 69 Rachbauer F, Sterzinger W, Eibl G. Radiographic abnormalities in the thoracolumbar spine of young elite skiers. Am J Sports Med 2001; 29 (04) 446-449
  • 70 Baranto A, Hellström M, Cederlund CG, Nyman R, Swärd L. Back pain and MRI changes in the thoraco-lumbar spine of top athletes in four different sports: a 15-year follow-up study. Knee Surg Sports Traumatol Arthrosc 2009; 17 (09) 1125-1134
  • 71 Kyere KA, Than KD, Wang AC. , et al. Schmorl's nodes. Eur Spine J 2012; 21 (11) 2115-2121
  • 72 Baranto A, Hellström M, Nyman R, Lundin O, Swärd L. Back pain and degenerative abnormalities in the spine of young elite divers: a 5-year follow-up magnetic resonance imaging study. Knee Surg Sports Traumatol Arthrosc 2006; 14 (09) 907-914
  • 73 Singer KP, Breidahl PD, Day RE. Variations in zygapophyseal joint orientation and level of transition at the thoracolumbar junction. Preliminary survey using computed tomography. Surg Radiol Anat 1988; 10 (04) 291-295
  • 74 Cyron BM, Hutton WC. Articular tropism and stability of the lumbar spine. Spine 1980; 5 (02) 168-172
  • 75 Hou Y, Luo Z. A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level. Spine 2009; 34 (12) E427-E433
  • 76 Scheuermann HW. The classic: kyphosis dorsalis juvenilis. Clin Orthop Relat Res 1977; (128) 5-7
  • 77 Zaidman AM, Zaidman MN, Strokova EL. , et al. The mode of inheritance of Scheuermann's disease. BioMed Res Int 2013; 2013: 973716
  • 78 Revel M, Andre-Deshays C, Roudier R, Roudier B, Hamard G, Amor B. Effects of repetitive strains on vertebral end plates in young rats. Clin Orthop Relat Res 1992; (279) 303-309
  • 79 Scoles PV, Latimer BM, DigIovanni BF, Vargo E, Bauza S, Jellema LM. Vertebral alterations in Scheuermann's kyphosis. Spine 1991; 16 (05) 509-515
  • 80 Sørensen KH. Scheuermann's Juvenile Kyphosis: Clinical Appearances, Radiography, Aetiology, and Prognosis. Copenhagen, Denmark: Munksgaard; 1964
  • 81 Stoddard A, Osborn JF. Scheuermann's disease or spinal osteochondrosis: its frequency and relationship with spondylosis. J Bone Joint Surg Br 1979; 61 (01) 56-58
  • 82 Palazzo C, Sailhan F, Revel M. Scheuermann's disease: an update. Joint Bone Spine 2014; 81 (03) 209-214
  • 83 Ristolainen L, Kettunen JA, Heliövaara M, Kujala UM, Heinonen A, Schlenzka D. Untreated Scheuermann's disease: a 37-year follow-up study. Eur Spine J 2012; 21 (05) 819-824
  • 84 Ali RM, Green DW, Patel TC. Scheuermann's kyphosis. Curr Opin Pediatr 1999; 11 (01) 70-75
  • 85 Makurthou AA, Oei L, El Saddy S. , et al. Scheuermann disease: evaluation of radiological criteria and population prevalence. Spine 2013; 38 (19) 1690-1694
  • 86 Blumenthal SL, Roach J, Herring JA. Lumbar Scheuermann's. A clinical series and classification. Spine 1987; 12 (09) 929-932
  • 87 Summers BN, Singh JP, Manns RA. The radiological reporting of lumbar Scheuermann's disease: an unnecessary source of confusion amongst clinicians and patients. Br J Radiol 2008; 81 (965) 383-385
  • 88 Gokce E, Beyhan M. Radiological imaging findings of Scheuermann disease. World J Radiol 2016; 8 (11) 895-901
  • 89 Greene TL, Hensinger RN, Hunter LY. Back pain and vertebral changes simulating Scheuermann's disease. J Pediatr Orthop 1985; 5 (01) 1-7
  • 90 Swärd L. The thoracolumbar spine in young elite athletes. Current concepts on the effects of physical training. Sports Med 1992; 13 (05) 357-364
  • 91 Tyrakowski M, Mardjetko S, Siemionow K. Radiographic spinopelvic parameters in skeletally mature patients with Scheuermann disease. Spine 2014; 39 (18) E1080-E1085
  • 92 Heithoff KB, Gundry CR, Burton CV, Winter RB. Juvenile discogenic disease. Spine 1994; 19 (03) 335-340
  • 93 Koehler SM, Lin JD, Stets KC, Qureshi SA, Martins DA, Hecht AC. Lumbar spinous process avulsion fracture in an adolescent dancer. Clin J Sport Med 2010; 20 (03) 213-214
  • 94 Schmitt HG, Wisser P. Shoveler's disease in adolescents (apophyseal fractures of the spinous processes of the thoracic vertebra [in German]. Langenbecks Arch Klin Chir Ver Dtsch Z Chir 1951; 268 (03) 333-340
  • 95 Koehler SM, Rosario-Quinones F, Mayer J. , et al. Understanding acute apophyseal spinous process avulsion injuries. Orthopedics 2014; 37 (03) e317-e321
  • 96 Mannor DA, Lindenfeld TN. Spinal process apophysitis mimics spondylolysis. Case reports. Am J Sports Med 2000; 28 (02) 257-260
  • 97 Linstrom NJ, Heiserman JE, Kortman KE. , et al. Anatomical and biomechanical analyses of the unique and consistent locations of sacral insufficiency fractures. Spine 2009; 34 (04) 309-315
  • 98 Hangai M, Kaneoka K, Hinotsu S. , et al. Lumbar intervertebral disk degeneration in athletes. Am J Sports Med 2009; 37 (01) 149-155
  • 99 Annear PT, Chakera TM, Foster DH, Hardcastle PH. Pars interarticularis stress and disc degeneration in cricket's potent strike force: the fast bowler. Aust N Z J Surg 1992; 62 (10) 768-773