Semin Neurol 2020; 40(03): 303-314
DOI: 10.1055/s-0040-1708869
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

High-Flow Vascular Malformations in Children

Ramin A. Morshed
1   Department of Neurological Surgery, University of California San Francisco, San Francisco, California
,
Ethan A. Winkler
1   Department of Neurological Surgery, University of California San Francisco, San Francisco, California
,
Helen Kim
3   Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California
,
Steve Braunstein
4   Department of Radiation Oncology, University of California San Francisco, San Francisco, California
,
Daniel L. Cooke
3   Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California
,
Steven W. Hetts
3   Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California
,
Adib A. Abla
1   Department of Neurological Surgery, University of California San Francisco, San Francisco, California
,
Heather J. Fullerton
2   Department of Neurology, University of California San Francisco, San Francisco, California
5   Department of Pediatrics, University of California San Francisco, San Francisco, California
,
Nalin Gupta
1   Department of Neurological Surgery, University of California San Francisco, San Francisco, California
5   Department of Pediatrics, University of California San Francisco, San Francisco, California
› Author Affiliations
Further Information

Publication History

Publication Date:
06 April 2020 (online)

Abstract

Children can have a variety of intracranial vascular anomalies ranging from small and incidental with no clinical consequences to complex lesions that can cause substantial neurologic deficits, heart failure, or profoundly affect development. In contrast to high-flow lesions with direct arterial-to-venous shunts, low-flow lesions such as cavernous malformations are associated with a lower likelihood of substantial hemorrhage, and a more benign course. Management of vascular anomalies in children has to incorporate an understanding of how treatment strategies may affect the normal development of the central nervous system. In this review, we discuss the etiologies, epidemiology, natural history, and genetic risk factors of three high-flow vascular malformations seen in children: brain arteriovenous malformations, intracranial dural arteriovenous fistulas, and vein of Galen malformations.

 
  • References

  • 1 San Millán Ruíz D, Gailloud P. Cerebral developmental venous anomalies. Childs Nerv Syst 2010; 26 (10) 1395-1406
  • 2 Gross BA, Du R, Orbach DB, Scott RM, Smith ER. The natural history of cerebral cavernous malformations in children. J Neurosurg Pediatr 2016; 17 (02) 123-128
  • 3 Al-Holou WN, O'Lynnger TM, Pandey AS. , et al. Natural history and imaging prevalence of cavernous malformations in children and young adults. J Neurosurg Pediatr 2012; 9 (02) 198-205
  • 4 Hetts SW, Keenan K, Fullerton HJ. , et al. Pediatric intracranial nongalenic pial arteriovenous fistulas: clinical features, angioarchitecture, and outcomes. AJNR Am J Neuroradiol 2012; 33 (09) 1710-1719
  • 5 Lawton MT, Rutledge WC, Kim H. , et al. Brain arteriovenous malformations. Nat Rev Dis Primers 2015; 1: 15008
  • 6 Yang W, Anderson-Keightly H, Westbroek EM. , et al. Long-term hemorrhagic risk in pediatric patients with arteriovenous malformations. J Neurosurg Pediatr 2016; 18 (03) 329-338
  • 7 Ding D, Starke RM, Kano H. , et al. International multicenter cohort study of pediatric brain arteriovenous malformations. Part 1: Predictors of hemorrhagic presentation. J Neurosurg Pediatr 2017; 19 (02) 127-135
  • 8 Meyer-Heim AD, Boltshauser E. Spontaneous intracranial haemorrhage in children: aetiology, presentation and outcome. Brain Dev 2003; 25 (06) 416-421
  • 9 Jordan LC, Johnston SC, Wu YW, Sidney S, Fullerton HJ. The importance of cerebral aneurysms in childhood hemorrhagic stroke: a population-based study. Stroke 2009; 40 (02) 400-405
  • 10 Hetts SW, Cooke DL, Nelson J. , et al. Influence of patient age on angioarchitecture of brain arteriovenous malformations. AJNR Am J Neuroradiol 2014; 35 (07) 1376-1380
  • 11 Mohr JP, Parides MK, Stapf C. , et al; International ARUBA Investigators. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 2014; 383 (9917): 614-621
  • 12 Walcott BP, Winkler EA, Rouleau GA, Lawton MT. Molecular, cellular, and genetic determinants of sporadic brain arteriovenous malformations. Neurosurgery 2016; 63 (Suppl. 01) 37-42
  • 13 Winkler EA, Lu AY, Raygor KP. , et al. Defective vascular signaling & prospective therapeutic targets in brain arteriovenous malformations. Neurochem Int 2019; 126: 126-138
  • 14 Nikolaev SI, Vetiska S, Bonilla X. , et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med 2018; 378 (03) 250-261
  • 15 Hong T, Yan Y, Li J. , et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain 2019; 142 (01) 23-34
  • 16 Walcott BP, Winkler EA, Zhou S. , et al. Identification of a rare BMP pathway mutation in a non-syndromic human brain arteriovenous malformation via exome sequencing. Hum Genome Var 2018; 5: 18001
  • 17 Wooderchak-Donahue WL, McDonald J, O'Fallon B. , et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet 2013; 93 (03) 530-537
  • 18 Milton I, Ouyang D, Allen CJ. , et al. Age-dependent lethality in novel transgenic mouse models of central nervous system arteriovenous malformations. Stroke 2012; 43 (05) 1432-1435
  • 19 Choi E-J, Chen W, Jun K, Arthur HM, Young WL, Su H. Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia. PLoS One 2014; 9 (02) e88511
  • 20 Walker EJ, Su H, Shen F. , et al. Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann Neurol 2011; 69 (06) 954-962
  • 21 Chen W, Guo Y, Walker EJ. , et al. Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain. Arterioscler Thromb Vasc Biol 2013; 33 (02) 305-310
  • 22 Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 2017; 21 (10) 933-947
  • 23 Walker EJ, Su H, Shen F. , et al. Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke 2012; 43 (07) 1925-1930
  • 24 Park SO, Wankhede M, Lee YJ. , et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 2009; 119 (11) 3487-3496
  • 25 Murphy PA, Kim TN, Huang L. , et al. Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. Proc Natl Acad Sci U S A 2014; 111 (50) 18007-18012
  • 26 Zhu W, Saw D, Weiss M. , et al. Induction of brain arteriovenous malformation through CRISPR/Cas9-mediated somatic Alk1 gene mutations in adult mice. Transl Stroke Res 2019; 10 (05) 557-565
  • 27 Winkler EA, Birk H, Burkhardt J-K. , et al. Reductions in brain pericytes are associated with arteriovenous malformation vascular instability. J Neurosurg 2018; 129 (06) 1464-1474
  • 28 Zhu W, Chen W, Zou D. , et al. Thalidomide reduces hemorrhage of brain arteriovenous malformations in a mouse model. Stroke 2018; 49 (05) 1232-1240
  • 29 Al-Shahi R, Warlow C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain 2001; 124 (Pt 10): 1900-1926
  • 30 Rangel-Castilla L, Russin JJ, Martinez-Del-Campo E, Soriano-Baron H, Spetzler RF, Nakaji P. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment. Neurosurg Focus 2014; 37 (03) E1
  • 31 da Costa L, Wallace MC, Ter Brugge KG, O'Kelly C, Willinsky RA, Tymianski M. The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke 2009; 40 (01) 100-105
  • 32 Rutledge WC, Ko NU, Lawton MT, Kim H. Hemorrhage rates and risk factors in the natural history course of brain arteriovenous malformations. Transl Stroke Res 2014; 5 (05) 538-542
  • 33 Stapf C, Mast H, Sciacca RR. , et al. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology 2006; 66 (09) 1350-1355
  • 34 Kim H, Al-Shahi Salman R, McCulloch CE, Stapf C, Young WL. ; MARS Coinvestigators. Untreated brain arteriovenous malformation: patient-level meta-analysis of hemorrhage predictors. Neurology 2014; 83 (07) 590-597
  • 35 Halim AX, Johnston SC, Singh V. , et al. Longitudinal risk of intracranial hemorrhage in patients with arteriovenous malformation of the brain within a defined population. Stroke 2004; 35 (07) 1697-1702
  • 36 Yamada S, Takagi Y, Nozaki K, Kikuta K, Hashimoto N. Risk factors for subsequent hemorrhage in patients with cerebral arteriovenous malformations. J Neurosurg 2007; 107 (05) 965-972
  • 37 Beecher JS, Lyon K, Ban VS. , et al. Delayed treatment of ruptured brain AVMs: is it ok to wait?. J Neurosurg 2018; 128 (04) 999-1005
  • 38 Al-Shahi Salman R, White PM, Counsell CE. , et al; Scottish Audit of Intracranial Vascular Malformations Collaborators. Outcome after conservative management or intervention for unruptured brain arteriovenous malformations. JAMA 2014; 311 (16) 1661-1669
  • 39 ApSimon HT, Reef H, Phadke RV, Popovic EA. A population-based study of brain arteriovenous malformation: long-term treatment outcomes. Stroke 2002; 33 (12) 2794-2800
  • 40 Stapf C, Khaw AV, Sciacca RR. , et al. Effect of age on clinical and morphological characteristics in patients with brain arteriovenous malformation. Stroke 2003; 34 (11) 2664-2669
  • 41 Sheth RD, Bodensteiner JB. Progressive neurologic impairment from an arteriovenous malformation vascular steal. Pediatr Neurol 1995; 13 (04) 352-354
  • 42 Hoh BL, Ogilvy CS, Butler WE, Loeffler JS, Putman CM, Chapman PH. Multimodality treatment of nongalenic arteriovenous malformations in pediatric patients. Neurosurgery 2000; 47 (02) 346-357 , discussion 357–358
  • 43 Darsaut TE, Guzman R, Marcellus ML. , et al. Management of pediatric intracranial arteriovenous malformations: experience with multimodality therapy. Neurosurgery 2011; 69 (03) 540-556 , discussion 556
  • 44 Lin Y, Lin F, Kang D, Jiao Y, Cao Y, Wang S. Supratentorial cavernous malformations adjacent to the corticospinal tract: surgical outcomes and predictive value of diffusion tensor imaging findings. J Neurosurg 2018; 128 (02) 541-552
  • 45 Zhu F-P, Wu J-S, Song Y-Y. , et al. Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study. Neurosurgery 2012; 71 (06) 1170-1183 , discussion 1183–1184
  • 46 Blauwblomme T, Bourgeois M, Meyer P. , et al. Long-term outcome of 106 consecutive pediatric ruptured brain arteriovenous malformations after combined treatment. Stroke 2014; 45 (06) 1664-1671
  • 47 Sanchez-Mejia RO, Chennupati SK, Gupta N, Fullerton H, Young WL, Lawton MT. Superior outcomes in children compared with adults after microsurgical resection of brain arteriovenous malformations. J Neurosurg 2006; 105 (02) 82-87
  • 48 Nerva JD, Mantovani A, Barber J. , et al. Treatment outcomes of unruptured arteriovenous malformations with a subgroup analysis of ARUBA (A Randomized Trial of Unruptured Brain Arteriovenous Malformations)-eligible patients. Neurosurgery 2015; 76 (05) 563-570 , n570, quiz 570
  • 49 Lawton MT, Kim H, McCulloch CE, Mikhak B, Young WL. A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery 2010; 66 (04) 702-713 , discussion 713
  • 50 Kim H, Abla AA, Nelson J. , et al. Validation of the supplemented Spetzler-Martin grading system for brain arteriovenous malformations in a multicenter cohort of 1009 surgical patients. Neurosurgery 2015; 76 (01) 25-31 , discussion 31–32, quiz 32–33
  • 51 Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg 1986; 65 (04) 476-483
  • 52 Lawton MT. Seven AVMs: Tenets and Techniques for Resection.. New York, NY: Thieme Medical Publishers, Inc.; 2014
  • 53 Bristol RE, Albuquerque FC, Spetzler RF, Rekate HL, McDougall CG, Zabramski JM. Surgical management of arteriovenous malformations in children. J Neurosurg 2006; 105 (02) 88-93
  • 54 Alexander MD, Hippe DS, Cooke DL. , et al. Targeted embolization of aneurysms associated with brain arteriovenous malformations at high risk for surgical resection: a case-control study. Neurosurgery 2018; 82 (03) 343-349
  • 55 Alexander MD, Cooke DL, Hallam DK, Kim H, Hetts SW, Ghodke BV. Less can be more: targeted embolization of aneurysms associated with arteriovenous malformations unsuitable for surgical resection. Interv Neuroradiol 2016; 22 (04) 445-451
  • 56 Burger IM, Murphy KJ, Jordan LC, Tamargo RJ, Gailloud P. Safety of cerebral digital subtraction angiography in children: complication rate analysis in 241 consecutive diagnostic angiograms. Stroke 2006; 37 (10) 2535-2539
  • 57 Lin N, Smith ER, Scott RM, Orbach DB. Safety of neuroangiography and embolization in children: complication analysis of 697 consecutive procedures in 394 patients. J Neurosurg Pediatr 2015; 16 (04) 432-438
  • 58 Hetts SW, Narvid J, Sanai N. , et al. Intracranial aneurysms in childhood: 27-year single-institution experience. AJNR Am J Neuroradiol 2009; 30 (07) 1315-1324
  • 59 Wolfe TJ, Hussain SI, Lynch JR, Fitzsimmons B-F, Zaidat OO. Pediatric cerebral angiography: analysis of utilization and findings. Pediatr Neurol 2009; 40 (02) 98-101
  • 60 Thiex R, Williams A, Smith E, Scott RM, Orbach DB. The use of Onyx for embolization of central nervous system arteriovenous lesions in pediatric patients. AJNR Am J Neuroradiol 2010; 31 (01) 112-120
  • 61 Mendes GAC, Kalani MYS, Iosif C. , et al. Transvenous curative embolization of cerebral arteriovenous malformations: a prospective cohort study. Neurosurgery 2018; 83 (05) 957-964
  • 62 van Rooij WJ, Jacobs S, Sluzewski M, van der Pol B, Beute GN, Sprengers ME. Curative embolization of brain arteriovenous malformations with onyx: patient selection, embolization technique, and results. AJNR Am J Neuroradiol 2012; 33 (07) 1299-1304
  • 63 Flores BC, Klinger DR, Rickert KL. , et al. Management of intracranial aneurysms associated with arteriovenous malformations. Neurosurg Focus 2014; 37 (03) E11
  • 64 Chen C-J, Norat P, Ding D. , et al. Transvenous embolization of brain arteriovenous malformations: a review of techniques, indications, and outcomes. Neurosurg Focus 2018; 45 (01) E13
  • 65 Potts MB, Sheth SA, Louie J. , et al. Stereotactic radiosurgery at a low marginal dose for the treatment of pediatric arteriovenous malformations: obliteration, complications, and functional outcomes. J Neurosurg Pediatr 2014; 14 (01) 1-11
  • 66 Dinca EB, de Lacy P, Yianni J. , et al. Gamma knife surgery for pediatric arteriovenous malformations: a 25-year retrospective study. J Neurosurg Pediatr 2012; 10 (05) 445-450
  • 67 Starke RM, Ding D, Kano H. , et al. International multicenter cohort study of pediatric brain arteriovenous malformations. Part 2: Outcomes after stereotactic radiosurgery. J Neurosurg Pediatr 2017; 19 (02) 136-148
  • 68 Ding D, Starke RM, Kano H. , et al. Radiosurgery for cerebral arteriovenous malformations in A Randomized Trial of Unruptured Brain Arteriovenous Malformations (ARUBA)-eligible patients: a multicenter study. Stroke 2016; 47 (02) 342-349
  • 69 Kano H, Flickinger JC, Tonetti D. , et al. Estimating the risks of adverse radiation effects after gamma knife radiosurgery for arteriovenous malformations. Stroke 2017; 48 (01) 84-90
  • 70 Abla AA, Rutledge WC, Seymour ZA. , et al. A treatment paradigm for high-grade brain arteriovenous malformations: volume-staged radiosurgical downgrading followed by microsurgical resection. J Neurosurg 2015; 122 (02) 419-432
  • 71 Kano H, Kondziolka D, Flickinger JC. , et al. Stereotactic radiosurgery for arteriovenous malformations, Part 6: multistaged volumetric management of large arteriovenous malformations. J Neurosurg 2012; 116 (01) 54-65
  • 72 Kano H, Kondziolka D, Flickinger JC. , et al. Multistaged volumetric management of large arteriovenous malformations. Prog Neurol Surg 2013; 27: 73-80
  • 73 Lasjaunias P, Magufis G, Goulao A. , et al. Anatomoclinical aspects of dural arteriovenous shunts in children. Review of 29 cases. Interv Neuroradiol 1996; 2 (03) 179-191
  • 74 Kincaid PK, Duckwiler GR, Gobin YP, Viñuela F. Dural arteriovenous fistula in children: endovascular treatment and outcomes in seven cases. AJNR Am J Neuroradiol 2001; 22 (06) 1217-1225
  • 75 Barbosa M, Mahadevan J, Weon YC. , et al. Dural sinus malformations (DSM) with giant lakes, in neonates and infants. review of 30 consecutive cases. Interv Neuroradiol 2003; 9 (04) 407-424
  • 76 Morita A, Meyer FB, Nichols DA, Patterson MC. Childhood dural arteriovenous fistulae of the posterior dural sinuses: three case reports and literature review. Neurosurgery 1995; 37 (06) 1193-1199 , discussion 1199–1200
  • 77 Hetts SW, Moftakhar P, Maluste N. , et al. Pediatric intracranial dural arteriovenous fistulas: age-related differences in clinical features, angioarchitecture, and treatment outcomes. J Neurosurg Pediatr 2016; 18 (05) 602-610
  • 78 Grillner P, Söderman M, Holmin S, Rodesch G. A spectrum of intracranial vascular high-flow arteriovenous shunts in RASA1 mutations. Childs Nerv Syst 2016; 32 (04) 709-715
  • 79 Srinivasa RN, Burrows PE. Dural arteriovenous malformation in a child with Bannayan-Riley-Ruvalcaba syndrome. AJNR Am J Neuroradiol 2006; 27 (09) 1927-1929
  • 80 Moon K, Ducruet AF, Crowley RW, Klas K, Bristol R, Albuquerque FC. Complex dural arteriovenous fistula in Bannayan-Riley-Ruvalcaba syndrome. J Neurosurg Pediatr 2013; 12 (01) 87-92
  • 81 Walcott BP, Smith ER, Scott RM, Orbach DB. Dural arteriovenous fistulae in pediatric patients: associated conditions and treatment outcomes. J Neurointerv Surg 2013; 5 (01) 6-9
  • 82 Bun YY, Ming CK, Ming CH, Ling CY, Ming CC. Endovascular treatment of a neonate with dural arteriovenous fistula and other features suggestive of cerebrofacial arteriovenous metameric syndromes. Childs Nerv Syst 2009; 25 (03) 383-387
  • 83 Krings T, Kim H, Power S. , et al; Brain Vascular Malformation Consortium HHT Investigator Group. Neurovascular manifestations in hereditary hemorrhagic telangiectasia: imaging features and genotype-phenotype correlations. AJNR Am J Neuroradiol 2015; 36 (05) 863-870
  • 84 Terada A, Komiyama M, Ishiguro T, Niimi Y, Oishi H. Nationwide survey of pediatric intracranial arteriovenous shunts in Japan: Japanese Pediatric Arteriovenous Shunts Study (JPAS). J Neurosurg Pediatr 2018; 22 (05) 550-558
  • 85 Souza MPS, Willinsky RA, Terbrugge KG. Intracranial dural arteriovenous shunts in children. The Toronto experience. Interv Neuroradiol 2003; 9 (Suppl. 02) 47-52
  • 86 Hetts SW, Tsai T, Cooke DL. , et al. Progressive versus nonprogressive intracranial dural arteriovenous fistulas: characteristics and outcomes. AJNR Am J Neuroradiol 2015; 36 (10) 1912-1919
  • 87 Yamamoto T, Asai K, Lin YW. , et al. Spontaneous resolution of symptoms in an infant with a congenital dural caroticocavernous fistula. Neuroradiology 1995; 37 (03) 247-249
  • 88 Lasjaunias PL, Chng SM, Sachet M, Alvarez H, Rodesch G, Garcia-Monaco R. The management of vein of Galen aneurysmal malformations. Neurosurgery 2006; 59 (05) (Suppl. 03) S184 –S194, discussion S3–S13
  • 89 Cognard C, Gobin YP, Pierot L. , et al. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology 1995; 194 (03) 671-680
  • 90 Borden JA, Wu JK, Shucart WA. A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg 1995; 82 (02) 166-179
  • 91 Reig AS, Simon SD, Neblett III WW, Mericle RA. Eight-year follow-up after palliative embolization of a neonatal intracranial dural arteriovenous fistula with high-output heart failure: management strategies for symptomatic fistula growth and bilateral femoral occlusions in pediatric patients. J Neurosurg Pediatr 2010; 6 (06) 553-558
  • 92 Puccinelli F, Deiva K, Bellesme C. , et al. Cerebral venous thrombosis after embolization of pediatric AVM with jugular bulb stenosis or occlusion: management and prevention. Eur J Paediatr Neurol 2014; 18 (06) 766-773
  • 93 Komiyama M, Matsusaka Y, Ishiguro T, Kitano S, Sakamoto H. Endovascular treatment of dural sinus malformation with arteriovenous shunt in a low birth weight neonate--case report. Neurol Med Chir (Tokyo) 2004; 44 (12) 655-659
  • 94 Komiyama M, Nishikawa M, Kitano S. , et al. Transumbilical embolization of a congenital dural arteriovenous fistula at the torcular Herophili in a neonate. Case report. J Neurosurg 1999; 90 (05) 964-969
  • 95 Ko A, Filardi T, Giussani C, Ghodke R, Browd SR. An intracranial aneurysm and dural arteriovenous fistula in a newborn. Pediatr Neurosurg 2010; 46 (06) 450-456
  • 96 Monges JA, Galarza M, Sosa FP, Ceciliano A. Direct surgical approach of a congenital dural arteriovenous fistula at the torcular Herophili in a neonate: case illustration. J Neurosurg 2005; 102 (04) 440
  • 97 Johnson JN, Hartman TK, Barbaresi W, Raffel C, Colby CE. Developmental outcomes for neonatal dural arteriovenous fistulas. J Neurosurg Pediatr 2009; 3 (02) 105-109
  • 98 Zaidi HA, Kalani MYS, Spetzler RF, McDougall CG, Albuquerque FC. Multimodal treatment strategies for complex pediatric cerebral arteriovenous fistulas: contemporary case series at Barrow Neurological Institute. J Neurosurg Pediatr 2015; 15 (06) 615-624
  • 99 Raybaud CA, Strother CM, Hald JK. Aneurysms of the vein of Galen: embryonic considerations and anatomical features relating to the pathogenesis of the malformation. Neuroradiology 1989; 31 (02) 109-128
  • 100 Revencu N, Boon LM, Mulliken JB. , et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 2008; 29 (07) 959-965
  • 101 Chida A, Shintani M, Wakamatsu H. , et al. ACVRL1 gene variant in a patient with vein of Galen aneurysmal malformation. J Pediatr Genet 2013; 2 (04) 181-189
  • 102 Tsutsumi Y, Kosaki R, Itoh Y. , et al. Vein of Galen aneurysmal malformation associated with an endoglin gene mutation. Pediatrics 2011; 128 (05) e1307-e1310
  • 103 Komiyama M, Miyatake S, Terada A, Ishiguro T, Ichiba H, Matsumoto N. Vein of Galen aneurysmal malformation in monozygotic twin. World Neurosurg 2016; 91: 672.e11-672.e15
  • 104 Duran D, Zeng X, Jin SC. , et al. Mutations in chromatin modifier and ephrin signaling genes in vein of Galen malformation. Neuron 2019; 101 (03) 429-443.e4
  • 105 Locksley HB. Natural history of subarachnoid hemorrhage, intracranial aneurysms and arteriovenous malformations. J Neurosurg 1966; 25 (03) 321-368
  • 106 Locksley HB, Sahs AL, Knowler L. Report on the cooperative study of intracranial aneurysms and subarachnoid hemorrhage. Section II. General survey of cases in the central registry and characteristics of the sample population. J Neurosurg 1966; 24 (05) 922-932
  • 107 Long DM, Seljeskog EL, Chou SN, French LA. Giant arteriovenous malformations of infancy and childhood. J Neurosurg 1974; 40 (03) 304-312
  • 108 Brinjikji W, Krings T, Murad MH, Rouchaud A, Meila D. Endovascular treatment of vein of Galen malformations: a systematic review and meta-analysis. AJNR Am J Neuroradiol 2017; 38 (12) 2308-2314
  • 109 Gopalan V, Rennie A, Robertson F. , et al. Presentation, course, and outcome of postneonatal presentations of vein of Galen malformation: a large, single-institution case series. Dev Med Child Neurol 2018; 60 (04) 424-429
  • 110 Yan J, Gopaul R, Wen J, Li X-S, Tang J-F. The natural progression of VGAMs and the need for urgent medical attention: a systematic review and meta-analysis. J Neurointerv Surg 2017; 9 (06) 564-570
  • 111 Chow ML, Cooke DL, Fullerton HJ. , et al. Radiological and clinical features of vein of Galen malformations. J Neurointerv Surg 2015; 7 (06) 443-448
  • 112 Kim DJ, Suh DC, Kim BM, Kim DI. Adjuvant coil assisted glue embolization of vein of Galen aneurysmal malformation in pediatric patients. Neurointervention 2018; 13 (01) 41-47
  • 113 Li A-H, Armstrong D, terBrugge KG. Endovascular treatment of vein of Galen aneurysmal malformation: management strategy and 21-year experience in Toronto. J Neurosurg Pediatr 2011; 7 (01) 3-10
  • 114 Berenstein A, Fifi JT, Niimi Y. , et al. Vein of Galen malformations in neonates: new management paradigms for improving outcomes. Neurosurgery 2012; 70 (05) 1207-1213 , discussion 1213–1214
  • 115 Fullerton HJ, Aminoff AR, Ferriero DM, Gupta N, Dowd CF. Neurodevelopmental outcome after endovascular treatment of vein of Galen malformations. Neurology 2003; 61 (10) 1386-1390
  • 116 Triffo WJ, Bourland JD, Couture DE, McMullen KP, Tatter SB, Morris PP. Definitive treatment of vein of Galen aneurysmal malformation with stereotactic radiosurgery. J Neurosurg 2014; 120 (01) 120-125
  • 117 Payne BR, Prasad D, Steiner M, Bunge H, Steiner L. Gamma surgery for vein of Galen malformations. J Neurosurg 2000; 93 (02) 229-236