CC BY-NC-ND 4.0 · Organic Materials 2020; 02(02): 108-115
DOI: 10.1055/s-0040-1708832
Focus Issue: Structure to Function in Supramolecular Polymers and Materials
Original Article
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

Using Rheo-Small-Angle Neutron Scattering to Understand How Functionalised Dipeptides Form Gels

a  School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
,
a  School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
,
Lionel Porcar
b  Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble, CEDEX 9, France
,
b  Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble, CEDEX 9, France
,
c  ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
,
a  School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
,
a  School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
› Author Affiliations
Funding Information Research Councils UK
Engineering and Physical Sciences Research Council
EP/L021978/1
EP/S032673/1
Leverhulme Trust
ECF-2017-223
Further Information

Publication History

Received: 30 January 2020

Accepted after revision: 03 March 2020

Publication Date:
17 April 2020 (online)


Abstract

We explore the use of rheo-small-angle neutron scattering as a method to collect structural information from neutron scattering simultaneously with rheology to understand how low-molecular-weight hydrogels form and behave under shear. We examine three different gelling hydrogel systems to assess what structures are formed and how these influence the rheology. Furthermore, we probe what is happening to the network during syneresis and why the gels do not recover after an applied strain. All this information is vital when considering gels for applications such as 3D-printing and injection.

Supporting Information

Supporting Information for this article is available online at https://doi.org./10.1055/s-0040-1708832.


Supporting Information

 
  • References

  • 1 Fichman G, Gazit E. Acta Biomater. 2014; 10: 1671
  • 2 Du X, Zhou J, Shi J, Xu B. Chem. Rev. 2015; 115: 13165
  • 3 Draper ER, Adams DJ. Langmuir 2019; 35: 6506
  • 4 Fleming S, Ulijn RV. Chem. Soc. Rev. 2014; 43: 8150
  • 5 Martin AD, Thordarson P. J. Mater. Chem. B 2020; 8: 863
  • 6 Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E. Biomacromolecules 2009; 10: 2646
  • 7 Arakawa H, Takeda K, Higashi SL, Shibata A, Kitamura Y, Ikeda M. Polym. J. 2020 , doi: 10.1038/s41428-019-0301-5
  • 8 Yang Z, Liang G, Ma M, Gao Y, Xu B. J. Mater. Chem. 2007; 17: 850
  • 9 Ryan DM, Nilsson BL. Polym. Chem. 2012; 3: 18
  • 10 Kuang Y, Gao Y, Xu B. Chem. Commun. 2011; 47: 12625
  • 11 Mahler A, Reches M, Rechter M, Cohen S, Gazit E. Adv. Mater. 2006; 18: 1365
  • 12 Huang R, Qi W, Feng L, Su R, He Z. Soft Matter 2011; 7: 6222
  • 13 Nolan MC, Fuentes Caparrós AM, Dietrich B, Barrow M, Cross ER, Bleuel M, King SM, Adams DJ. Soft Matter 2017; 13: 8426
  • 14 Laverty G, McCloskey AP, Gilmore BF, Jones DS, Zhou J, Xu B. Biomacromolecules 2014; 15: 3429
  • 15 Contreras-Montoya R, Castellví A, Escolano-Casado G, Juanhuix J, Conejero-Muriel M, Lopez-Lopez MT, Cuerva JM, Álvarez de Cienfuegos L, Gavira JA. Cryst Growth Des 2019; 19: 4229
  • 16 Chakraborty P, Guterman T, Adadi N, Yadid M, Brosh T, Adler-Abramovich L, Dvir T, Gazit E. ACS Nano 2019; 13: 163
  • 17 Dudukovic NA, Zukoski CF. Soft Matter 2015; 11: 7663
  • 18 Jayawarna V, Ali M, Jowitt TA, Miller AF, Saiani A, Gough JE, Ulijn RV. Adv. Mater. 2006; 18: 611
  • 19 Adams DJ, Butler MF, Frith WJ, Kirkland M, Mullen L, Sanderson P. Soft Matter 2009; 5: 1856
  • 20 Draper ER, Wallace M, Schweins R, Poole RJ, Adams DJ. Langmuir 2017; 33: 2387
  • 21 Wallace M, Iggo JA, Adams DJ. Soft Matter 2015; 11: 7739
  • 22 Wang Y, Qi W, Wang J, Li Q, Yang X, Zhang J, Liu X, Huang R, Wang M, Su R, He Z. Chem. Mater. 2018; 30: 7902
  • 23 Tang C, Smith AM, Collins RF, Ulijn RV, Saiani A. Langmuir 2009; 25: 9447
  • 24 Chen L, Revel S, Morris K, Serpell LC, Adams DJ. Langmuir 2010; 26: 13466
  • 25 Draper ER, Dietrich B, McAulay K, Brasnett C, Abdizadeh H, Patmanidis I, Marrink SJ, Su H, Cui H, Schweins R, Seddon A, Adams DJ. Matter 2020; 2: 764
  • 26 Cardoso AZ, Mears LL. E, Cattoz BN, Griffiths PC, Schweins R, Adams DJ. Soft Matter 2016; 12: 3612
  • 27 Draper ER, Su H, Brasnett C, Poole RJ, Rogers S, Cui H, Seddon A, Adams DJ. Angew. Chem. Int. Ed. 2017; 56: 10467
  • 28 Martin AD, Wojciechowski JP, Robinson AB, Heu C, Garvey CJ, Ratcliffe J, Waddington LJ, Gardiner J, Thordarson P. Sci. Rep. 2017; 7: 43947
  • 29 Eberle AP. R, Porcar L. Curr. Opin. Colloid Interface Sci. 2012; 17: 33
  • 30 Blair DL. Chapter 2 Viscoelastic properties: the rheology of soft solids. In: Molecular Gels: Structure and Dynamics;. The Royal Society of Chemistry; London: 2018: 28-56
  • 31 Riley JK, Richards JJ, Wagner NJ, Butler PD. Soft Matter 2018; 14: 5344
  • 32 Dawn A, Kumari H. Chem. Eur. J. 2018; 24: 762
  • 33 Yan C, Altunbas A, Yucel T, Nagarkar RP, Schneider JP, Pochan DJ. Soft Matter 2010; 6: 5143
  • 34 Pocker Y, Green E. J. Am. Chem. Soc. 1973; 95: 113
  • 35 Ben Messaoud G, Le Griel P, Prévost S, Hermida-Merino D, Soetaert W, Roelants SL. V. K., Stevens CV, Baccile N. Soft Matter 2020 , doi: 10.1039/C9SM02158B