Subscribe to RSS

DOI: 10.1055/s-0040-1708827
A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection

Abstract
Thrombocytopenia is commonly associated with sepsis and infections, which in turn are characterized by a profound immune reaction to the invading pathogen. Platelets are one of the cellular entities that exert considerable immune, antibacterial, and antiviral actions, and are therefore active participants in the host response. Platelets are sensitive to surrounding inflammatory stimuli and contribute to the immune response by multiple mechanisms, including endowing the endothelium with a proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and inflammation, promoting the effector functions of immune cells, and ensuring an optimal adaptive immune response. During infection, pathogens and their products influence the platelet response and can even be toxic. However, platelets are able to sense and engage bacteria and viruses to assist in their removal and destruction. Platelets greatly contribute to host defense by multiple mechanisms, including forming immune complexes and aggregates, shedding their granular content, and internalizing pathogens and subsequently being marked for removal. These processes, and the nature of platelet function in general, cause the platelet to be irreversibly consumed in the execution of its duty. An exaggerated systemic inflammatory response to infection can drive platelet dysfunction, where platelets are inappropriately activated and face immunological destruction. While thrombocytopenia may arise by condition-specific mechanisms that cause an imbalance between platelet production and removal, this review evaluates a generic large-scale mechanism for platelet depletion as a repercussion of its involvement at the nexus of responses to infection.
Author Contribution Statement
M.P.: wrote paper, prepared figures; E.P.: wrote parts of the paper, study leader, and corresponding author. Both authors edited and reviewed the manuscript.
Publication History
Publication Date:
12 April 2020 (online)
© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1
Semple JW,
Freedman J.
Platelets and innate immunity. Cell Mol Life Sci 2010; 67 (04) 499-511
MissingFormLabel
- 2
Semple JW,
Italiano Jr JE,
Freedman J.
Platelets and the immune continuum. Nat Rev Immunol 2011; 11 (04) 264-274
MissingFormLabel
- 3
Speth C,
Löffler J,
Krappmann S,
Lass-Flörl C,
Rambach G.
Platelets as immune cells in infectious diseases. Future Microbiol 2013; 8 (11) 1431-1451
MissingFormLabel
- 4
Weyrich AS,
Zimmerman GA.
Platelets: signaling cells in the immune continuum. Trends Immunol 2004; 25 (09) 489-495
MissingFormLabel
- 5
Jenne CN,
Kubes P.
Platelets in inflammation and infection. Platelets 2015; 26 (04) 286-292
MissingFormLabel
- 6
Assinger A.
Platelets and infection - an emerging role of platelets in viral infection. Front
Immunol 2014; 5: 649
MissingFormLabel
- 7
Hottz ED,
Bozza FA,
Bozza PT.
Platelets in immune response to virus and immunopathology of viral infections. Front
Med (Lausanne) 2018; 5: 121
MissingFormLabel
- 8
Yeaman MR.
Platelets in defense against bacterial pathogens. Cell Mol Life Sci 2010; 67 (04)
525-544
MissingFormLabel
- 9
Yeaman MR.
Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 2014; 12 (06)
426-437
MissingFormLabel
- 10
Fitzgerald JR,
Foster TJ,
Cox D.
The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 2006; 4 (06)
445-457
MissingFormLabel
- 11
Hamzeh-Cognasse H,
Damien P,
Chabert A,
Pozzetto B,
Cognasse F,
Garraud O.
Platelets and infections - complex interactions with bacteria. Front Immunol 2015;
6: 82
MissingFormLabel
- 12
Cox D,
Kerrigan SW,
Watson SP.
Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation.
J Thromb Haemost 2011; 9 (06) 1097-1107
MissingFormLabel
- 13
Wong CHY,
Jenne CN,
Petri B,
Chrobok NL,
Kubes P.
Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other
innate immunity and contributes to bacterial clearance. Nat Immunol 2013; 14 (08)
785-792
MissingFormLabel
- 14
Sullam PM,
Frank U,
Yeaman MR,
Täuber MG,
Bayer AS,
Chambers HF.
Effect of thrombocytopenia on the early course of streptococcal endocarditis. J Infect
Dis 1993; 168 (04) 910-914
MissingFormLabel
- 15
Zhang X,
Liu Y,
Gao Y.
et al.
Inhibiting platelets aggregation could aggravate the acute infection caused by Staphylococcus
aureus. Platelets 2011; 22 (03) 228-236
MissingFormLabel
- 16
Claushuis TAM,
van Vught LA,
Scicluna BP.
et al;
Molecular Diagnosis and Risk Stratification of Sepsis Consortium.
Thrombocytopenia is associated with a dysregulated host response in critically ill
sepsis patients. Blood 2016; 127 (24) 3062-3072
MissingFormLabel
- 17
Dewitte A,
Lepreux S,
Villeneuve J.
et al.
Blood platelets and sepsis pathophysiology: a new therapeutic prospect in critically
ill patients?. Ann Intensive Care 2017; 7 (01) 115
MissingFormLabel
- 18
Iannacone M,
Sitia G,
Isogawa M.
et al.
Platelets prevent IFN-α/β-induced lethal hemorrhage promoting CTL-dependent clearance
of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A 2008; 105 (02) 629-634
MissingFormLabel
- 19
Loria GD,
Romagnoli PA,
Moseley NB,
Rucavado A,
Altman JD.
Platelets support a protective immune response to LCMV by preventing splenic necrosis.
Blood 2013; 121 (06) 940-950
MissingFormLabel
- 20
Solomon Tsegaye T,
Gnirß K,
Rahe-Meyer N.
et al.
Platelet activation suppresses HIV-1 infection of T cells. Retrovirology 2013; 10:
48
MissingFormLabel
- 21
D' Atri LP,
Schattner M.
Platelet toll-like receptors in thromboinflammation. Front Biosci 2017; 22: 1867-1883
MissingFormLabel
- 22
Jenne CN.
Platelets: crossroads of immunity and hemostasis. Blood 2014; 124 (05) 671-672
MissingFormLabel
- 23
Li Z,
Delaney MK,
O'Brien KA,
Du X.
Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 2010;
30 (12) 2341-2349
MissingFormLabel
- 24
van Gils JM,
Zwaginga JJ,
Hordijk PL.
Molecular and functional interactions among monocytes, platelets, and endothelial
cells and their relevance for cardiovascular diseases. J Leukoc Biol 2009; 85 (02)
195-204
MissingFormLabel
- 25
Shannon O.
Platelet interaction with bacterial toxins and secreted products. Platelets 2015;
26 (04) 302-308
MissingFormLabel
- 26
Zhang W,
Nardi MA,
Borkowsky W,
Li Z,
Karpatkin S.
Role of molecular mimicry of hepatitis C virus protein with platelet GPIIIa in hepatitis
C-related immunologic thrombocytopenia. Blood 2009; 113 (17) 4086-4093
MissingFormLabel
- 27
Aref S,
Sleem T,
El Menshawy N.
et al.
Antiplatelet antibodies contribute to thrombocytopenia associated with chronic hepatitis
C virus infection. Hematology 2009; 14 (05) 277-281
MissingFormLabel
- 28
Olumuyiwa-Akeredolu OO,
Page MJ,
Soma P,
Pretorius E.
Platelets: emerging facilitators of cellular crosstalk in rheumatoid arthritis. Nat
Rev Rheumatol 2019; 15 (04) 237-248
MissingFormLabel
- 29
Franchini M,
Veneri D,
Lippi G.
Thrombocytopenia and infections. Expert Rev Hematol 2017; 10 (01) 99-106
MissingFormLabel
- 30
Flaujac C,
Boukour S,
Cramer-Bordé E.
Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci 2010; 67 (04)
545-556
MissingFormLabel
- 31
Larkin CM,
Santos-Martinez M-J,
Ryan T,
Radomski MW.
Sepsis-associated thrombocytopenia. Thromb Res 2016; 141: 11-16
MissingFormLabel
- 32
Tosi MF.
Innate immune responses to infection. J Allergy Clin Immunol 2005; 116 (02) 241-249
, quiz 250
MissingFormLabel
- 33
McNicol A,
Agpalza A,
Jackson EC,
Hamzeh-Cognasse H,
Garraud O,
Cognasse F.
Streptococcus sanguinis-induced cytokine release from platelets. J Thromb Haemost
2011; 9 (10) 2038-2049
MissingFormLabel
- 34
Page AV,
Liles WC.
Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence
2013; 4 (06) 507-516
MissingFormLabel
- 35
Yeaman MR.
The role of platelets in antimicrobial host defense. Clin Infect Dis 1997; 25 (05)
951-968 , quiz 969–970
MissingFormLabel
- 36
Sugiyama MG,
Gamage A,
Zyla R.
et al.
Influenza virus infection induces platelet-endothelial adhesion which contributes
to lung injury. J Virol 2015; 90 (04) 1812-1823
MissingFormLabel
- 37
Gawaz M,
Langer H,
May AE.
Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115 (12) 3378-3384
MissingFormLabel
- 38
Assinger A,
Laky M,
Schabbauer G.
et al.
Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors,
platelets and TLR2. J Thromb Haemost 2011; 9 (04) 799-809
MissingFormLabel
- 39
Miedzobrodzki J,
Panz T,
Płonka PM.
et al.
Platelets augment respiratory burst in neutrophils activated by selected species of
gram-positive or gram-negative bacteria. Folia Histochem Cytobiol 2008; 46 (03) 383-388
MissingFormLabel
- 40
Peters MJ,
Dixon G,
Kotowicz KT,
Hatch DJ,
Heyderman RS,
Klein NJ.
Circulating platelet-neutrophil complexes represent a subpopulation of activated neutrophils
primed for adhesion, phagocytosis and intracellular killing. Br J Haematol 1999; 106
(02) 391-399
MissingFormLabel
- 41
Nagata K,
Tsuji T,
Todoroki N.
et al.
Activated platelets induce superoxide anion release by monocytes and neutrophils through
P-selectin (CD62). J Immunol 1993; 151 (06) 3267-3273
MissingFormLabel
- 42
Jin R,
Yu S,
Song Z.
et al.
Soluble CD40 ligand stimulates CD40-dependent activation of the β2 integrin Mac-1
and protein kinase C zeda (PKCζ) in neutrophils: implications for neutrophil-platelet
interactions and neutrophil oxidative burst. PLoS One 2013; 8 (06) e64631
MissingFormLabel
- 43
Haselmayer P,
Grosse-Hovest L,
von Landenberg P,
Schild H,
Radsak MP.
TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 2007;
110 (03) 1029-1035
MissingFormLabel
- 44
Bouchon A,
Facchetti F,
Weigand MA,
Colonna M.
TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001;
410 (6832): 1103-1107
MissingFormLabel
- 45
Mohamadzadeh M,
Coberley SS,
Olinger GG.
et al.
Activation of triggering receptor expressed on myeloid cells-1 on human neutrophils
by marburg and ebola viruses. J Virol 2006; 80 (14) 7235-7244
MissingFormLabel
- 46
Brinkmann V,
Reichard U,
Goosmann C.
et al.
Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
MissingFormLabel
- 47
McDonald B,
Urrutia R,
Yipp BG,
Jenne CN,
Kubes P.
Intravascular neutrophil extracellular traps capture bacteria from the bloodstream
during sepsis. Cell Host Microbe 2012; 12 (03) 324-333
MissingFormLabel
- 48
Ma AC,
Kubes P.
Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb
Haemost 2008; 6 (03) 415-420
MissingFormLabel
- 49
Jenne CN,
Wong CH,
Zemp FJ.
et al.
Neutrophils recruited to sites of infection protect from virus challenge by releasing
neutrophil extracellular traps. Cell Host Microbe 2013; 13 (02) 169-180
MissingFormLabel
- 50
Urban CF,
Ermert D,
Schmid M.
et al.
Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved
in host defense against Candida albicans. PLoS Pathog 2009; 5 (10) e1000639
MissingFormLabel
- 51
Saitoh T,
Komano J,
Saitoh Y.
et al.
Neutrophil extracellular traps mediate a host defense response to human immunodeficiency
virus-1. Cell Host Microbe 2012; 12 (01) 109-116
MissingFormLabel
- 52
Assinger A,
Laky M,
Badrnya S,
Esfandeyari A,
Volf I.
Periodontopathogens induce expression of CD40L on human platelets via TLR2 and TLR4.
Thromb Res 2012; 130 (03) e73-e78
MissingFormLabel
- 53
Elzey BD,
Tian J,
Jensen RJ.
et al.
Platelet-mediated modulation of adaptive immunity. A communication link between innate
and adaptive immune compartments. Immunity 2003; 19 (01) 9-19
MissingFormLabel
- 54
Sowa JM,
Crist SA,
Ratliff TL,
Elzey BD.
Platelet influence on T- and B-cell responses. Arch Immunol Ther Exp (Warsz) 2009;
57 (04) 235-241
MissingFormLabel
- 55
Elzey BD,
Schmidt NW,
Crist SA.
et al.
Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes
challenge. Blood 2008; 111 (07) 3684-3691
MissingFormLabel
- 56
Kaneider NC,
Kaser A,
Tilg H,
Ricevuti G,
Wiedermann CJ.
CD40 ligand-dependent maturation of human monocyte-derived dendritic cells by activated
platelets. Int J Immunopathol Pharmacol 2003; 16 (03) 225-231
MissingFormLabel
- 57
Czapiga M,
Kirk AD,
Lekstrom-Himes J.
Platelets deliver costimulatory signals to antigen-presenting cells: a potential bridge
between injury and immune activation. Exp Hematol 2004; 32 (02) 135-139
MissingFormLabel
- 58
Kissel K,
Berber S,
Nockher A,
Santoso S,
Bein G,
Hackstein H.
Human platelets target dendritic cell differentiation and production of proinflammatory
cytokines. Transfusion 2006; 46 (05) 818-827
MissingFormLabel
- 59
Hamzeh-Cognasse H,
Cognasse F,
Palle S.
et al.
Direct contact of platelets and their released products exert different effects on
human dendritic cell maturation. BMC Immunol 2008; 9: 54
MissingFormLabel
- 60
Iannacone M,
Sitia G,
Isogawa M.
et al.
Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 2005; 11 (11)
1167-1169
MissingFormLabel
- 61
Lang PA,
Contaldo C,
Georgiev P.
et al.
Aggravation of viral hepatitis by platelet-derived serotonin. Nat Med 2008; 14 (07)
756-761
MissingFormLabel
- 62
Verschoor A,
Neuenhahn M,
Navarini AA.
et al.
A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells
depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12 (12) 1194-1201
MissingFormLabel
- 63
Ogura H,
Kawasaki T,
Tanaka H.
et al.
Activated platelets enhance microparticle formation and platelet-leukocyte interaction
in severe trauma and sepsis. J Trauma 2001; 50 (05) 801-809
MissingFormLabel
- 64
Ge S,
Hertel B,
Emden SH.
et al.
Microparticle generation and leucocyte death in Shiga toxin-mediated HUS. Nephrol
Dial Transplant 2012; 27 (07) 2768-2775
MissingFormLabel
- 65
Wang J,
Zhang W,
Nardi MA,
Li Z.
HIV-1 Tat-induced platelet activation and release of CD154 contribute to HIV-1-associated
autoimmune thrombocytopenia. J Thromb Haemost 2011; 9 (03) 562-573
MissingFormLabel
- 66
Mayne E,
Funderburg NT,
Sieg SF.
et al.
Increased platelet and microparticle activation in HIV infection: upregulation of
P-selectin and tissue factor expression. J Acquir Immune Defic Syndr 2012; 59 (04)
340-346
MissingFormLabel
- 67
Boilard E,
Nigrovic PA,
Larabee K.
et al.
Platelets amplify inflammation in arthritis via collagen-dependent microparticle production.
Science 2010; 327 (5965): 580-583
MissingFormLabel
- 68
Nomura S.
Function and clinical significance of platelet-derived microparticles. Int J Hematol
2001; 74 (04) 397-404
MissingFormLabel
- 69
Barry OP,
Praticò D,
Savani RC,
FitzGerald GA.
Modulation of monocyte-endothelial cell interactions by platelet microparticles. J
Clin Invest 1998; 102 (01) 136-144
MissingFormLabel
- 70
Lo S-C,
Hung C-Y,
Lin D-T,
Peng H-C,
Huang T-F.
Involvement of platelet glycoprotein Ib in platelet microparticle mediated neutrophil
activation. J Biomed Sci 2006; 13 (06) 787-796
MissingFormLabel
- 71
Forlow SB,
McEver RP,
Nollert MU.
Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood
2000; 95 (04) 1317-1323
MissingFormLabel
- 72
Merten M,
Pakala R,
Thiagarajan P,
Benedict CR.
Platelet microparticles promote platelet interaction with subendothelial matrix in
a glycoprotein IIb/IIIa-dependent mechanism. Circulation 1999; 99 (19) 2577-2582
MissingFormLabel
- 73
Sprague DL,
Elzey BD,
Crist SA,
Waldschmidt TJ,
Jensen RJ,
Ratliff TL.
Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal
by platelet-derived membrane vesicles. Blood 2008; 111 (10) 5028-5036
MissingFormLabel
- 74
Nomura S,
Fujita S,
Nakanishi T.
et al.
Platelet-derived microparticles cause CD154-dependent activation of dendritic cells.
Platelets 2012; 23 (01) 81-82
MissingFormLabel
- 75
Brown GT,
McIntyre TM.
Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet
shedding of proinflammatory IL-1β-rich microparticles. J Immunol 2011; 186 (09) 5489-5496
MissingFormLabel
- 76
Mause SF,
von Hundelshausen P,
Zernecke A,
Koenen RR,
Weber C.
Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte
recruitment on endothelium. Arterioscler Thromb Vasc Biol 2005; 25 (07) 1512-1518
MissingFormLabel
- 77
Yin W,
Ghebrehiwet B,
Peerschke EI.
Expression of complement components and inhibitors on platelet microparticles. Platelets
2008; 19 (03) 225-233
MissingFormLabel
- 78
Clawson CC,
White JG.
Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors.
Am J Pathol 1971; 65 (02) 367-380
MissingFormLabel
- 79
Clawson CC,
Rao GH,
White JG.
Platelet interaction with bacteria. IV. Stimulation of the release reaction. Am J
Pathol 1975; 81 (02) 411-420
MissingFormLabel
- 80
Ali RA,
Wuescher LM,
Worth RG.
Platelets: essential components of the immune system. Curr Trends Immunol 2015; 16:
65-78
MissingFormLabel
- 81
Kerrigan SW.
The expanding field of platelet-bacterial interconnections. Platelets 2015; 26 (04)
293-301
MissingFormLabel
- 82
Mirlashari MR,
Hagberg IA,
Lyberg T.
Platelet-platelet and platelet-leukocyte interactions induced by outer membrane vesicles
from N. meningitidis. Platelets 2002; 13 (02) 91-99
MissingFormLabel
- 83
McNicol A.
Bacteria-induced intracellular signalling in platelets. Platelets 2015; 26 (04) 309-316
MissingFormLabel
- 84
Arman M,
Krauel K,
Tilley DO.
et al.
Amplification of bacteria-induced platelet activation is triggered by FcγRIIA, integrin
αIIbβ3, and platelet factor 4. Blood 2014; 123 (20) 3166-3174
MissingFormLabel
- 85
Naik UP.
Bacteria exploit platelets. Blood 2014; 123 (20) 3067-3068
MissingFormLabel
- 86
Clemetson KJ,
Clemetson JM,
Proudfoot AE,
Power CA,
Baggiolini M,
Wells TN.
Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human
platelets. Blood 2000; 96 (13) 4046-4054
MissingFormLabel
- 87
Gear AR,
Camerini D.
Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and
host defense. Microcirculation 2003; 10 (3–4): 335-350
MissingFormLabel
- 88
Del Conde I,
Crúz MA,
Zhang H,
López JA,
Afshar-Kharghan V.
Platelet activation leads to activation and propagation of the complement system.
J Exp Med 2005; 201 (06) 871-879
MissingFormLabel
- 89
Peerschke EIB,
Yin W,
Ghebrehiwet B.
Platelet mediated complement activation. Adv Exp Med Biol 2008; 632: 81-91
MissingFormLabel
- 90
Cognasse F,
Hamzeh H,
Chavarin P,
Acquart S,
Genin C,
Garraud O.
Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 2005;
83 (02) 196-198
MissingFormLabel
- 91
Aslam R,
Speck ER,
Kim M.
et al.
Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia
and tumor necrosis factor-alpha production in vivo. Blood 2006; 107 (02) 637-641
MissingFormLabel
- 92
Garraud O,
Cognasse F.
Platelet Toll-like receptor expression: the link between “danger” ligands and inflammation.
Inflamm Allergy Drug Targets 2010; 9 (05) 322-333
MissingFormLabel
- 93
Andonegui G,
Kerfoot SM,
McNagny K,
Ebbert KV,
Patel KD,
Kubes P.
Platelets express functional Toll-like receptor-4. Blood 2005; 106 (07) 2417-2423
MissingFormLabel
- 94
Zhang G,
Han J,
Welch EJ.
et al.
Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation
via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 2009; 182
(12) 7997-8004
MissingFormLabel
- 95
Berthet J,
Damien P,
Hamzeh-Cognasse H.
et al.
Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling
and differential cytokine secretion. Clin Immunol 2012; 145 (03) 189-200
MissingFormLabel
- 96
Cognasse F,
Hamzeh-Cognasse H,
Lafarge S.
et al.
Toll-like receptor 4 ligand can differentially modulate the release of cytokines by
human platelets. Br J Haematol 2008; 141 (01) 84-91
MissingFormLabel
- 97
Cognasse F,
Lafarge S,
Chavarin P,
Acquart S,
Garraud O.
Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2
and TLR9. Intensive Care Med 2007; 33 (02) 382-384
MissingFormLabel
- 98
Zielinski T,
Wachowicz B,
Saluk-Juszczak J,
Kaca W.
The generation of superoxide anion in blood platelets in response to different forms
of Proteus mirabilis lipopolysaccharide: effects of staurosporin, wortmannin, and
indomethacin. Thromb Res 2001; 103 (02) 149-155
MissingFormLabel
- 99
Werts C,
Tapping RI,
Mathison JC.
et al.
Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism.
Nat Immunol 2001; 2 (04) 346-352
MissingFormLabel
- 100
Darveau RP,
Pham TT,
Lemley K.
et al.
Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that
functionally interact with both toll-like receptors 2 and 4. Infect Immun 2004; 72
(09) 5041-5051
MissingFormLabel
- 101
Erridge C,
Pridmore A,
Eley A,
Stewart J,
Poxton IR.
Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas
aeruginosa signal via toll-like receptor 2. J Med Microbiol 2004; 53 (Pt 8): 735-740
MissingFormLabel
- 102
Keane C,
Tilley D,
Cunningham A.
et al.
Invasive Streptococcus pneumoniae trigger platelet activation via Toll-like receptor
2. J Thromb Haemost 2010; 8 (12) 2757-2765
MissingFormLabel
- 103
Blair P,
Rex S,
Vitseva O.
et al.
Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory
response through activation of phosphoinositide 3-kinase. Circ Res 2009; 104 (03)
346-354
MissingFormLabel
- 104
Kälvegren H,
Skoglund C,
Helldahl C,
Lerm M,
Grenegård M,
Bengtsson T.
Toll-like receptor 2 stimulation of platelets is mediated by purinergic P2X1-dependent
Ca2+ mobilisation, cyclooxygenase and purinergic P2Y1 and P2Y12 receptor activation.
Thromb Haemost 2010; 103 (02) 398-407
MissingFormLabel
- 105
Ward JR,
Bingle L,
Judge HM.
et al.
Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation
by adenosine diphosphate and platelet activating factor. Thromb Haemost 2005; 94 (04)
831-838
MissingFormLabel
- 106
Czapiga M,
Gao JL,
Kirk A,
Lekstrom-Himes J.
Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp
Hematol 2005; 33 (01) 73-84
MissingFormLabel
- 107
Lourbakos A,
Yuan YP,
Jenkins AL.
et al.
Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis
leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 2001;
97 (12) 3790-3797
MissingFormLabel
- 108
Pham K,
Feik D,
Hammond BF,
Rams TE,
Whitaker EJ.
Aggregation of human platelets by gingipain-R from Porphyromonas gingivalis cells
and membrane vesicles. Platelets 2002; 13 (01) 21-30
MissingFormLabel
- 109
Bhakdi S,
Muhly M,
Mannhardt U.
et al.
Staphylococcal alpha toxin promotes blood coagulation via attack on human platelets.
J Exp Med 1988; 168 (02) 527-542
MissingFormLabel
- 110
Arvand M,
Bhakdi S,
Dahlbäck B,
Preissner KT.
Staphylococcus aureus alpha-toxin attack on human platelets promotes assembly of the
prothrombinase complex. J Biol Chem 1990; 265 (24) 14377-14381
MissingFormLabel
- 111
Hu H,
Armstrong PCJ,
Khalil E.
et al.
GPVI and GPIbα mediate staphylococcal superantigen-like protein 5 (SSL5) induced platelet
activation and direct toward glycans as potential inhibitors. PLoS One 2011; 6 (04)
e19190
MissingFormLabel
- 112
de Haas CJC,
Weeterings C,
Vughs MM,
de Groot PG,
Van Strijp JA,
Lisman T.
Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion
under flow conditions, which involves glycoprotein Ibα and αIIbβ3. J Thromb Haemost
2009; 7 (11) 1867-1874
MissingFormLabel
- 113
Niemann S,
Bertling A,
Brodde MF.
et al.
Panton-Valentine leukocidin associated with S. aureus osteomyelitis activates platelets
via neutrophil secretion products. Sci Rep 2018; 8 (01) 2185
MissingFormLabel
- 114
Bertling A,
Niemann S,
Hussain M.
et al.
Staphylococcal extracellular adherence protein induces platelet activation by stimulation
of thiol isomerases. Arterioscler Thromb Vasc Biol 2012; 32 (08) 1979-1990
MissingFormLabel
- 115
Palma M,
Shannon O,
Quezada HC,
Berg A,
Flock JI.
Extracellular fibrinogen-binding protein, Efb, from Staphylococcus aureus blocks platelet
aggregation due to its binding to the alpha-chain. J Biol Chem 2001; 276 (34) 31691-31697
MissingFormLabel
- 116
Shannon O,
Flock JI.
Extracellular fibrinogen binding protein, Efb, from Staphylococcus aureus binds to
platelets and inhibits platelet aggregation. Thromb Haemost 2004; 91 (04) 779-789
MissingFormLabel
- 117
Shannon O,
Uekötter A,
Flock JI.
Extracellular fibrinogen binding protein, Efb, from Staphylococcus aureus as an antiplatelet
agent in vivo. Thromb Haemost 2005; 93 (05) 927-931
MissingFormLabel
- 118
Tran U,
Boyle T,
Shupp JW,
Hammamieh R,
Jett M.
Staphylococcal enterotoxin B initiates protein kinase C translocation and eicosanoid
metabolism while inhibiting thrombin-induced aggregation in human platelets. Mol Cell
Biochem 2006; 288 (1–2): 171-178
MissingFormLabel
- 119
Waller AK,
Sage T,
Kumar C,
Carr T,
Gibbins JM,
Clarke SR.
Staphylococcus aureus lipoteichoic acid inhibits platelet activation and thrombus
formation via the Paf receptor. J Infect Dis 2013; 208 (12) 2046-2057
MissingFormLabel
- 120
Beachey EH,
Chiang TM,
Ofek I,
Kang AH.
Interaction of lipoteichoic acid of group A streptococci with human platelets. Infect
Immun 1977; 16 (02) 649-654
MissingFormLabel
- 121
Wu BQ,
Zhi MJ,
Liu H,
Huang J,
Zhou YQ,
Zhang TT.
Inhibitory effects of lipoteichoic acid from Staphylococcus aureus on platelet function
and platelet-monocyte aggregation. Inflamm Res 2011; 60 (08) 775-782
MissingFormLabel
- 122
Sheu JR,
Lee CR,
Lin CH.
et al.
Mechanisms involved in the antiplatelet activity of Staphylococcus aureus lipoteichoic
acid in human platelets. Thromb Haemost 2000; 83 (05) 777-784
MissingFormLabel
- 123
Chugh TD,
Burns GJ,
Shuhaiber HJ,
Bahr GM.
Adherence of Staphylococcus epidermidis to fibrin-platelet clots in vitro mediated
by lipoteichoic acid. Infect Immun 1990; 58 (02) 315-319
MissingFormLabel
- 124
Vanassche T,
Kauskot A,
Verhaegen J.
et al.
Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet
aggregation. Thromb Haemost 2012; 107 (06) 1107-1121
MissingFormLabel
- 125
Suehiro A,
Oura Y,
Ueda M,
Kakishita E.
Inhibitory effect of staphylokinase on platelet aggregation. Thromb Haemost 1993;
70 (05) 834-837
MissingFormLabel
- 126
Kraemer BF,
Campbell RA,
Schwertz H.
et al.
Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human
platelets. Blood 2012; 120 (25) 5014-5020
MissingFormLabel
- 127
Towhid ST,
Nega M,
Schmidt EM.
et al.
Stimulation of platelet apoptosis by peptidoglycan from Staphylococcus aureus 113.
Apoptosis 2012; 17 (09) 998-1008
MissingFormLabel
- 128
Bhakdi S,
Tranum-Jensen J.
Alpha-toxin of Staphylococcus aureus. Microbiol Rev 1991; 55 (04) 733-751
MissingFormLabel
- 129
Guo Y-L,
Liu D-Q,
Bian Z,
Zhang C-Y,
Zen K.
Down-regulation of platelet surface CD47 expression in Escherichia coli O157:H7 infection-induced
thrombocytopenia. PLoS One 2009; 4 (09) e7131
MissingFormLabel
- 130
Johnson MK,
Boese-Marrazzo D,
Pierce Jr WA.
Effects of pneumolysin on human polymorphonuclear leukocytes and platelets. Infect
Immun 1981; 34 (01) 171-176
MissingFormLabel
- 131
Bayer AS,
Ramos MD,
Menzies BE,
Yeaman MR,
Shen AJ,
Cheung AL.
Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced
virulence in experimental endocarditis: a host defense role for platelet microbicidal
proteins. Infect Immun 1997; 65 (11) 4652-4660
MissingFormLabel
- 132
Bryant AE,
Bayer CR,
Chen RY,
Guth PH,
Wallace RJ,
Stevens DL.
Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes
infection: the role of streptolysin O-induced platelet/neutrophil complexes. J Infect
Dis 2005; 192 (06) 1014-1022
MissingFormLabel
- 133
Bryant AE,
Chen RY,
Nagata Y.
et al.
Clostridial gas gangrene. II. Phospholipase C-induced activation of platelet gpIIbIIIa
mediates vascular occlusion and myonecrosis in Clostridium perfringens gas gangrene.
J Infect Dis 2000; 182 (03) 808-815
MissingFormLabel
- 134
Khan SY,
Kelher MR,
Heal JM.
et al.
Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through
CD40, and is a potential cofactor in the development of transfusion-related acute
lung injury. Blood 2006; 108 (07) 2455-2462
MissingFormLabel
- 135
Chakrabarti S,
Varghese S,
Vitseva O,
Tanriverdi K,
Freedman JE.
CD40 ligand influences platelet release of reactive oxygen intermediates. Arterioscler
Thromb Vasc Biol 2005; 25 (11) 2428-2434
MissingFormLabel
- 136
Youssefian T,
Drouin A,
Massé JM,
Guichard J,
Cramer EM.
Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs
in a specific subcellular compartment and is enhanced by platelet activation. Blood
2002; 99 (11) 4021-4029
MissingFormLabel
- 137
Li X,
Iwai T,
Nakamura H.
et al.
An ultrastructural study of Porphyromonas gingivalis-induced platelet aggregation.
Thromb Res 2008; 122 (06) 810-819
MissingFormLabel
- 138
White JG.
Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of
the open canalicular system. Platelets 2005; 16 (02) 121-131
MissingFormLabel
- 139
Boukour S,
Cramer EM.
Platelet interaction with bacteria. Platelets 2005; 16 (3–4): 215-217
MissingFormLabel
- 140
Worth RG,
Chien CD,
Chien P,
Reilly MP,
McKenzie SE,
Schreiber AD.
Platelet FcgammaRIIA binds and internalizes IgG-containing complexes. Exp Hematol
2006; 34 (11) 1490-1495
MissingFormLabel
- 141
Antczak AJ,
Vieth JA,
Singh N,
Worth RG.
Internalization of IgG-coated targets results in activation and secretion of soluble
CD40 ligand and RANTES by human platelets. Clin Vaccine Immunol 2011; 18 (02) 210-216
MissingFormLabel
- 142
Semple JW,
Aslam R,
Kim M,
Speck ER,
Freedman J.
Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG-opsonized
platelets. Blood 2007; 109 (11) 4803-4805
MissingFormLabel
- 143
Huang Z-Y,
Chien P,
Indik ZK,
Schreiber AD.
Human platelet FcγRIIA and phagocytes in immune-complex clearance. Mol Immunol 2011;
48 (04) 691-696
MissingFormLabel
- 144
Maugeri N,
Rovere-Querini P,
Evangelista V.
et al.
Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin,
and β2 integrin-dependent cell clearance program. Blood 2009; 113 (21) 5254-5265
MissingFormLabel
- 145
Manfredi AA,
Rovere-Querini P,
Maugeri N.
Dangerous connections: neutrophils and the phagocytic clearance of activated platelets.
Curr Opin Hematol 2010; 17 (01) 3-8
MissingFormLabel
- 146
Maugeri N,
Cattaneo M,
Rovere-Querini P,
Manfredi AA.
Platelet clearance by circulating leukocytes: a rare event or a determinant of the
“immune continuum”?. Platelets 2014; 25 (03) 224-225
MissingFormLabel
- 147
Terada H,
Baldini M,
Ebbe S,
Madoff MA.
Interaction of influenza virus with blood platelets. Blood 1966; 28 (02) 213-228
MissingFormLabel
- 148
Danon D,
Jerushalmy Z,
De Vries A.
Incorporation of influenza virus in human blood platelets in vitro. Electron microscopical
observation. Virology 1959; 9 (04) 719-722
MissingFormLabel
- 149
Zucker-Franklin D,
Seremetis S,
Zheng ZY.
Internalization of human immunodeficiency virus type I and other retroviruses by megakaryocytes
and platelets. Blood 1990; 75 (10) 1920-1923
MissingFormLabel
- 150
Beck Z,
Jagodzinski LL,
Eller MA.
et al.
Platelets and erythrocyte-bound platelets bind infectious HIV-1 in plasma of chronically
infected patients. PLoS One 2013; 8 (11) e81002
MissingFormLabel
- 151
Hamaia S,
Li C,
Allain J-P.
The dynamics of hepatitis C virus binding to platelets and 2 mononuclear cell lines.
Blood 2001; 98 (08) 2293-2300
MissingFormLabel
- 152
Pugliese A,
Gennero L,
Cutufia M.
et al.
HCV infective virions can be carried by human platelets. Cell Biochem Funct 2004;
22 (06) 353-358
MissingFormLabel
- 153
de Almeida AJ,
Campos-de-Magalhães M,
Brandão-Mello CE.
et al.
Detection of hepatitis C virus in platelets: evaluating its relationship to antiviral
therapy outcome. Hepatogastroenterology 2009; 56 (90) 429-436
MissingFormLabel
- 154
Forghani B,
Schmidt NJ.
Association of herpes simplex virus with platelets of experimentally infected mice.
Arch Virol 1983; 76 (03) 269-274
MissingFormLabel
- 155
Bik T,
Sarov I,
Livne A.
Interaction between vaccinia virus and human blood platelets. Blood 1982; 59 (03)
482-487
MissingFormLabel
- 156
Wang S,
He R,
Patarapotikul J,
Innis BL,
Anderson R.
Antibody-enhanced binding of dengue-2 virus to human platelets. Virology 1995; 213
(01) 254-257
MissingFormLabel
- 157
Ghosh K,
Gangodkar S,
Jain P.
et al.
Imaging the interaction between dengue 2 virus and human blood platelets using atomic
force and electron microscopy. J Electron Microsc (Tokyo) 2008; 57 (03) 113-118
MissingFormLabel
- 158
Noisakran S,
Gibbons RV,
Songprakhon P.
et al.
Detection of dengue virus in platelets isolated from dengue patients. Southeast Asian
J Trop Med Public Health 2009; 40 (02) 253-262
MissingFormLabel
- 159
Alonso AL,
Cox D.
Platelet interactions with viruses and parasites. Platelets 2015; 26 (04) 317-323
MissingFormLabel
- 160
Boilard E,
Paré G,
Rousseau M.
et al.
Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation.
Blood 2014; 123 (18) 2854-2863
MissingFormLabel
- 161
Moi ML,
Lim CK,
Takasaki T,
Kurane I.
Involvement of the Fc gamma receptor IIA cytoplasmic domain in antibody-dependent
enhancement of dengue virus infection. J Gen Virol 2010; 91 (Pt 1): 103-111
MissingFormLabel
- 162
Rodenhuis-Zybert IA,
van der Schaar HM,
da Silva Voorham JM.
et al.
Immature dengue virus: a veiled pathogen?. PLoS Pathog 2010; 6 (01) e1000718
MissingFormLabel
- 163
Negrotto S,
Jaquenod de Giusti C,
Rivadeneyra L.
et al.
Platelets interact with coxsackieviruses B and have a critical role in the pathogenesis
of virus-induced myocarditis. J Thromb Haemost 2015; 13 (02) 271-282
MissingFormLabel
- 164
Mackow ER,
Gavrilovskaya IN.
Cellular receptors and hantavirus pathogenesis. Curr Top Microbiol Immunol 2001; 256:
91-115
MissingFormLabel
- 165
Assinger A,
Kral JB,
Yaiw KC.
et al.
Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent
proinflammatory and proangiogenic responses. Arterioscler Thromb Vasc Biol 2014; 34
(04) 801-809
MissingFormLabel
- 166
Koupenova M,
Vitseva O,
MacKay CR.
et al.
Platelet-TLR7 mediates host survival and platelet count during viral infection in
the absence of platelet-dependent thrombosis. Blood 2014; 124 (05) 791-802
MissingFormLabel
- 167
Koupenova M,
Corkrey HA,
Vitseva O.
et al.
The role of platelets in mediating a response to human influenza infection. Nat Commun
2019; 10 (01) 1780
MissingFormLabel
- 168
Thon JN,
Peters CG,
Machlus KR.
et al.
T granules in human platelets function in TLR9 organization and signaling. J Cell
Biol 2012; 198 (04) 561-574
MissingFormLabel
- 169
Mesquita EC,
Hottz ED,
Amancio RT.
et al.
Persistent platelet activation and apoptosis in virologically suppressed HIV-infected
individuals. Sci Rep 2018; 8 (01) 14999
MissingFormLabel
- 170
Li J,
van der Wal DE,
Zhu G.
et al.
Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic
target in immune thrombocytopenia. Nat Commun 2015; 6: 7737
MissingFormLabel
- 171
Sørensen AL,
Rumjantseva V,
Nayeb-Hashemi S.
et al.
Role of sialic acid for platelet life span: exposure of beta-galactose results in
the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing
liver macrophages and hepatocytes. Blood 2009; 114 (08) 1645-1654
MissingFormLabel
- 172
Maurice A,
Marchand-Arvier M,
Edert D,
Le Faou A,
Gondrexon G,
Vigneron C.
The virucidal effect of platelet concentrates: preliminary study and first conclusions.
Platelets 2002; 13 (04) 219-222
MissingFormLabel
- 173
Chabert A,
Hamzeh-Cognasse H,
Pozzetto B.
et al.
Human platelets and their capacity of binding viruses: meaning and challenges?. BMC
Immunol 2015; 16: 26
MissingFormLabel
- 174
Boukour S,
Massé JM,
Bénit L,
Dubart-Kupperschmitt A,
Cramer EM.
Lentivirus degradation and DC-SIGN expression by human platelets and megakaryocytes.
J Thromb Haemost 2006; 4 (02) 426-435
MissingFormLabel
- 175
Jansen G,
Low H,
van den Brand J,
van Riel D,
van der Vries E.
Uptake of influenza virus by platelets occurs via phagocytosis. Blood 2017; 130 (Suppl.
01) 4834
MissingFormLabel
- 176
Jansen AJG,
Low HZ,
van den Brand J,
van Riel D,
Osterhaus A,
van der Vries E.
Platelets can phagocytose influenza virus which may contribute to the occurrence of
thrombocytopenia during influenza infection. Blood 2016; 128 (22) 1358
MissingFormLabel
- 177
Kullaya VI,
de Mast Q,
van der Ven A.
et al.
Platelets modulate innate immune response against human respiratory syncytial virus
in vitro. Viral Immunol 2017; 30 (08) 576-581
MissingFormLabel
- 178
Alonzo MT,
Lacuesta TL,
Dimaano EM.
et al.
Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue
virus infections. J Infect Dis 2012; 205 (08) 1321-1329
MissingFormLabel
- 179
Stone D,
Liu Y,
Shayakhmetov D,
Li Z-Y,
Ni S,
Lieber A.
Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial
system of the liver. J Virol 2007; 81 (09) 4866-4871
MissingFormLabel
- 180
Trier DA,
Gank KD,
Kupferwasser D.
et al.
Platelet antistaphylococcal responses occur through P2X1 and P2Y12 receptor-induced
activation and kinocidin release. Infect Immun 2008; 76 (12) 5706-5713
MissingFormLabel
- 181
White JG.
Why human platelets fail to kill bacteria. Platelets 2006; 17 (03) 191-200
MissingFormLabel
- 182
Coburn J,
Leong JM,
Erban JK.
Integrin alpha IIb beta 3 mediates binding of the Lyme disease agent Borrelia burgdorferi
to human platelets. Proc Natl Acad Sci U S A 1993; 90 (15) 7059-7063
MissingFormLabel
- 183
Kälvegren H,
Majeed M,
Bengtsson T.
Chlamydia pneumoniae binds to platelets and triggers P-selectin expression and aggregation:
a causal role in cardiovascular disease?. Arterioscler Thromb Vasc Biol 2003; 23 (09)
1677-1683
MissingFormLabel
- 184
Byrne MF,
Kerrigan SW,
Corcoran PA.
et al.
Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce
platelet aggregation. Gastroenterology 2003; 124 (07) 1846-1854
MissingFormLabel
- 185
Naito M,
Sakai E,
Shi Y.
et al.
Porphyromonas gingivalis-induced platelet aggregation in plasma depends on Hgp44 adhesin
but not Rgp proteinase. Mol Microbiol 2006; 59 (01) 152-167
MissingFormLabel
- 186
Pietrocola G,
Schubert A,
Visai L.
et al.
FbsA, a fibrinogen-binding protein from Streptococcus agalactiae, mediates platelet
aggregation. Blood 2005; 105 (03) 1052-1059
MissingFormLabel
- 187
Kerrigan SW,
Clarke N,
Loughman A,
Meade G,
Foster TJ,
Cox D.
Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under
arterial shear in vitro. Arterioscler Thromb Vasc Biol 2008; 28 (02) 335-340
MissingFormLabel
- 188
Loughman A,
Fitzgerald JR,
Brennan MP.
et al.
Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted
by Staphylococcus aureus clumping factor A. Mol Microbiol 2005; 57 (03) 804-818
MissingFormLabel
- 189
Miajlovic H,
Loughman A,
Brennan M,
Cox D,
Foster TJ.
Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation
mediated by Staphylococcus aureus clumping factor B. Infect Immun 2007; 75 (07) 3335-3343
MissingFormLabel
- 190
Fitzgerald JR,
Loughman A,
Keane F.
et al.
Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human
platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding
to the FcgammaRIIa receptor. Mol Microbiol 2006; 59 (01) 212-230
MissingFormLabel
- 191
O'Brien L,
Kerrigan SW,
Kaw G.
et al.
Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus
aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat
protein SdrE and protein A. Mol Microbiol 2002; 44 (04) 1033-1044
MissingFormLabel
- 192
Herrmann M,
Suchard SJ,
Boxer LA,
Waldvogel FA,
Lew PD.
Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence
to surfaces. Infect Immun 1991; 59 (01) 279-288
MissingFormLabel
- 193
Herrmann M,
Lai QJ,
Albrecht RM,
Mosher DF,
Proctor RA.
Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin
and platelet integrins. J Infect Dis 1993; 167 (02) 312-322
MissingFormLabel
- 194
Bayer AS,
Sullam PM,
Ramos M,
Li C,
Cheung AL,
Yeaman MR.
Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism
which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen-binding
domains. Infect Immun 1995; 63 (09) 3634-3641
MissingFormLabel
- 195
Hawiger J,
Steckley S,
Hammond D.
et al.
Staphylococci-induced human platelet injury mediated by protein A and immunoglobulin
G Fc fragment receptor. J Clin Invest 1979; 64 (04) 931-937
MissingFormLabel
- 196
Nguyen T,
Ghebrehiwet B,
Peerschke EIB.
Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for
staphylococcal interactions with platelets. Infect Immun 2000; 68 (04) 2061-2068
MissingFormLabel
- 197
Zapotoczna M,
Jevnikar Z,
Miajlovic H,
Kos J,
Foster TJ.
Iron-regulated surface determinant B (IsdB) promotes Staphylococcus aureus adherence
to and internalization by non-phagocytic human cells. Cell Microbiol 2013; 15 (06)
1026-1041
MissingFormLabel
- 198
Miajlovic H,
Zapotoczna M,
Geoghegan JA,
Kerrigan SW,
Speziale P,
Foster TJ.
Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus
with the GPIIb/IIIa receptor on platelets. Microbiology 2010; 156 (Pt 3): 920-928
MissingFormLabel
- 199
O'Seaghdha M,
van Schooten CJ,
Kerrigan SW.
et al.
Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated
by conserved IgG binding regions. FEBS J 2006; 273 (21) 4831-4841
MissingFormLabel
- 200
Hartleib J,
Köhler N,
Dickinson RB.
et al.
Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood
2000; 96 (06) 2149-2156
MissingFormLabel
- 201
Sjöbring U,
Ringdahl U,
Ruggeri ZM.
Induction of platelet thrombi by bacteria and antibodies. Blood 2002; 100 (13) 4470-4477
MissingFormLabel
- 202
Brennan MP,
Loughman A,
Devocelle M.
et al.
Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein
G in platelet activation. J Thromb Haemost 2009; 7 (08) 1364-1372
MissingFormLabel
- 203
Petersen HJ,
Keane C,
Jenkinson HF.
et al.
Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii
through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect Immun
2010; 78 (01) 413-422
MissingFormLabel
- 204
Keane C,
Petersen H,
Reynolds K.
et al.
Mechanism of outside-in αIIbβ3-mediated activation of human platelets by the colonizing
Bacterium, Streptococcus gordonii. Arterioscler Thromb Vasc Biol 2010; 30 (12) 2408-2415
MissingFormLabel
- 205
Takamatsu D,
Bensing BA,
Cheng H.
et al.
Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific
carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol Microbiol 2005;
58 (02) 380-392
MissingFormLabel
- 206
Kerrigan SW,
Jakubovics NS,
Keane C.
et al.
Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function.
Infect Immun 2007; 75 (12) 5740-5747
MissingFormLabel
- 207
Mitchell J,
Tristan A,
Foster TJ.
Characterization of the fibrinogen-binding surface protein Fbl of Staphylococcus lugdunensis.
Microbiology 2004; 150 (Pt 11): 3831-3841
MissingFormLabel
- 208
Seo HS,
Xiong YQ,
Mitchell J,
Seepersaud R,
Bayer AS,
Sullam PM.
Bacteriophage lysin mediates the binding of streptococcus mitis to human platelets
through interaction with fibrinogen. PLoS Pathog 2010; 6 (08) e1001047
MissingFormLabel
- 209
Mitchell J,
Sullam PM.
Streptococcus mitis phage-encoded adhesins mediate attachment to alpha2-8-linked sialic
acid residues on platelet membrane gangliosides. Infect Immun 2009; 77 (08) 3485-3490
MissingFormLabel
- 210
Tilley DO,
Arman M,
Smolenski A.
et al.
Glycoprotein Ibα and FcγRIIa play key roles in platelet activation by the colonizing
bacterium, Streptococcus oralis. J Thromb Haemost 2013; 11 (05) 941-950
MissingFormLabel
- 211
Anderson R,
Feldman C.
Review manuscript: mechanisms of platelet activation by the pneumococcus and the role
of platelets in community-acquired pneumonia. J Infect 2017; 75 (06) 473-485
MissingFormLabel
- 212
Binsker U,
Kohler TP,
Krauel K,
Kohler S,
Schwertz H,
Hammerschmidt S.
Pneumococcal adhesins PavB and PspC are important for the interplay with human thrombospondin-1.
J Biol Chem 2015; 290 (23) 14542-14555
MissingFormLabel
- 213
Binsker U,
Kohler TP,
Krauel K.
et al.
Serotype 3 pneumococci sequester platelet-derived human thrombospondin-1 via the adhesin
and immune evasion protein Hic. J Biol Chem 2017; 292 (14) 5770-5783
MissingFormLabel
- 214
Svensson L,
Baumgarten M,
Mörgelin M,
Shannon O.
Platelet activation by Streptococcus pyogenes leads to entrapment in platelet aggregates,
from which bacteria subsequently escape. Infect Immun 2014; 82 (10) 4307-4314
MissingFormLabel
- 215
Ford I,
Douglas CW,
Cox D,
Rees DG,
Heath J,
Preston FE.
The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus
sanguis. Br J Haematol 1997; 97 (04) 737-746
MissingFormLabel
- 216
Plummer C,
Wu H,
Kerrigan SW,
Meade G,
Cox D,
Ian Douglas CW.
A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets
via GPIb. Br J Haematol 2005; 129 (01) 101-109
MissingFormLabel
- 217
Kerrigan SW,
Douglas I,
Wray A.
et al.
A role for glycoprotein Ib in Streptococcus sanguis-induced platelet aggregation.
Blood 2002; 100 (02) 509-516
MissingFormLabel
- 218
Zhang Y,
Bergelson JM.
Adenovirus receptors. J Virol 2005; 79 (19) 12125-12131
MissingFormLabel
- 219
Eggerman TL,
Mondoro TH,
Lozier JN,
Vostal JG.
Adenoviral vectors do not induce, inhibit, or potentiate human platelet aggregation.
Hum Gene Ther 2002; 13 (01) 125-128
MissingFormLabel
- 220
Jin YY,
Yu XN,
Qu ZY.
et al.
Adenovirus type 3 induces platelet activation in vitro. Mol Med Rep 2014; 9 (01) 370-374
MissingFormLabel
- 221
Othman M,
Labelle A,
Mazzetti I,
Elbatarny HS,
Lillicrap D.
Adenovirus-induced thrombocytopenia: the role of von Willebrand factor and P-selectin
in mediating accelerated platelet clearance. Blood 2007; 109 (07) 2832-2839
MissingFormLabel
- 222
Simon AY,
Sutherland MR,
Pryzdial ELG.
Dengue virus binding and replication by platelets. Blood 2015; 126 (03) 378-385
MissingFormLabel
- 223
Hottz ED,
Oliveira MF,
Nunes PC.
et al.
Dengue induces platelet activation, mitochondrial dysfunction and cell death through
mechanisms that involve DC-SIGN and caspases. J Thromb Haemost 2013; 11 (05) 951-962
MissingFormLabel
- 224
Alvarez CP,
Lasala F,
Carrillo J,
Muñiz O,
Corbí AL,
Delgado R.
C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and
in trans. J Virol 2002; 76 (13) 6841-6844
MissingFormLabel
- 225
Nelsen-Salz B,
Eggers HJ,
Zimmermann H.
Integrin alpha(v)beta3 (vitronectin receptor) is a candidate receptor for the virulent
echovirus 9 strain Barty. J Gen Virol 1999; 80 (Pt 9): 2311-2313
MissingFormLabel
- 226
Nunez D,
Charriaut-Marlangue C,
Barel M,
Benveniste J,
Frade R.
Activation of human platelets through gp140, the C3d/EBV receptor (CR2). Eur J Immunol
1987; 17 (04) 515-520
MissingFormLabel
- 227
Gavrilovskaya IN,
Gorbunova EE,
Mackow ER.
Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial
cells. J Virol 2010; 84 (09) 4832-4839
MissingFormLabel
- 228
Zahn A,
Jennings N,
Ouwehand WH,
Allain JP.
Hepatitis C virus interacts with human platelet glycoprotein VI. J Gen Virol 2006;
87 (Pt 8): 2243-2251
MissingFormLabel
- 229
Kowalska MA,
Ratajczak J,
Hoxie J.
et al.
Megakaryocyte precursors, megakaryocytes and platelets express the HIV co-receptor
CXCR4 on their surface: determination of response to stromal-derived factor-1 by megakaryocytes
and platelets. Br J Haematol 1999; 104 (02) 220-229
MissingFormLabel
- 230
Chaipan C,
Soilleux EJ,
Simpson P.
et al.
DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets.
J Virol 2006; 80 (18) 8951-8960
MissingFormLabel
- 231
Gianni T,
Leoni V,
Chesnokova LS,
Hutt-Fletcher LM,
Campadelli-Fiume G.
αvβ3-integrin is a major sensor and activator of innate immunity to herpes simplex
virus-1. Proc Natl Acad Sci U S A 2012; 109 (48) 19792-19797
MissingFormLabel
- 232
Triantafilou K,
Triantafilou M,
Takada Y,
Fernandez N.
Human parechovirus 1 utilizes integrins alphavbeta3 and alphavbeta1 as receptors.
J Virol 2000; 74 (13) 5856-5862
MissingFormLabel
- 233
Shimojima M,
Ströher U,
Ebihara H,
Feldmann H,
Kawaoka Y.
Identification of cell surface molecules involved in dystroglycan-independent Lassa
virus cell entry. J Virol 2012; 86 (04) 2067-2078
MissingFormLabel
- 234
Coulson BS,
Londrigan SL,
Lee DJ.
Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are
implicated in virus entry into cells. Proc Natl Acad Sci U S A 1997; 94 (10) 5389-5394
MissingFormLabel
- 235
Fleming FE,
Graham KL,
Takada Y,
Coulson BS.
Determinants of the specificity of rotavirus interactions with the alpha2beta1 integrin.
J Biol Chem 2011; 286 (08) 6165-6174
MissingFormLabel