CC BY-NC-ND 4.0 · Journal of Health and Allied Sciences NU 2016; 06(01): 004-008
DOI: 10.1055/s-0040-1708607
Original Article

Isolation and Antimicrobial Activity of β-Sitosterol-3-O-Glucoside from Lannea Kerstingii Engl. & K. Krause (Anacardiacea)

Njinga N. S.
1   Lecturer, Department of Pharmaceutical and Medicinal Chemistry, University of Ilorin, Nigeria
,
Sule M. I.
2   Professor, Department of Pharmaceutical and Medicinal Chemistry, Ahmadu Bello University, Zaria, Nigeria
,
Pateh U. U.
2   Professor, Department of Pharmaceutical and Medicinal Chemistry, Ahmadu Bello University, Zaria, Nigeria
,
Hassan H. S.
2   Professor, Department of Pharmaceutical and Medicinal Chemistry, Ahmadu Bello University, Zaria, Nigeria
,
Abdullahi S. T.
1   Lecturer, Department of Pharmaceutical and Medicinal Chemistry, University of Ilorin, Nigeria
,
Ache R. N.
3   Ph.D. Student, Department of Chemistry, Faculty of Sciences, University of Yaounde I. Cameroon.
› Author Affiliations

Abstract

The emergence of more and more drug resistance bacteria has led to the study of the antimicrobial activity of the compound isolated from Lannea kerstingii Engl. & K. Krause (Anacardiacea) since the active principles of many drugs found in plants are secondary metabolites. A compound was isolated using dry vacuum liquid chromatography and eluting with CHCl3 -EtOAc and monitored using TLC. 3 1 13 The glycoside was characterized using 1 H NMR and 13 C NMR spectra recorded in DMSO-d6 at 400 MHz and 125 MHz, respectively. The antimicrobial activity of the compound was determined using agar diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal/minimum fungicidal concentration (MBC/MFC) was determined using broth dilution method. The compound isolated was found to be β-sitosterol-3-O-glucoside. The β-sitosterol-3-O-glucoside (200μg/ml) was active against S. aureus, Methicillin Resistant Staphylococcus aureus, P. mirabilis, S. typhi, K. pneumoniae, E. coli, B. subtilis with zone of inhibition ranging from 24mm to 34mm and inactive against P. aeroginosa and Proteus vulgaris. It was also active against the fungi C. albicans and C. tropicalis but inactive against C. krusei. The MIC ranged from 25 to 50 μg/ml while the MBC/MFC ranged from 50 to 200 μg/ml. These results show the wide spectrum antimicrobial activity of β-sitosterol-3-O-glucoside.



Publication History

Article published online:
22 April 2020

© .

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 WHO. The top 10 causes of death. Retrieved August, 2014 from http://www.who.int/mediacentre/factsheets/fs310/en/index2.html.
  • 2 Reddy P, Chadaga S, Noskin GA. Antibiotic considerations in the treatment of multidrug-resistant (MDR) pathogens: a case-based review. J Hosp Med. 2009;4(6):E8-15.
  • 3 Costa ES, Hiruma-Lima CA, Lima EO, Sucupira GC, Bertolin AO, Lolis SF et al. Antimicrobial activity of some medicinal plants of the Cerrado, Brazil. Phyotherapy Res. 2008; 22: 705-707.
  • 4 Njinga NS, Sule MI , Pateh UU, Hassan HS, Ahmad MM, Abdullahi ST, Danja BA, Bawa B. Phytochemical and antimicrobial activity of the leaves of lannea kerstingii engl & k. Krause (anacadiaceae). NUJHS. 2014; 4(4):4-9.
  • 5 Njinga NS, Sule MI, Patteh UU, Hassan HS, Usman MA, Haruna MS. Phytochemical and Antidiarrhea Activity of the Methanolic Extract of the Stem Bark of Lannea kerstingii Engl. and K. Krause (Anacardiaceae). J. Nat. Prod. Plant Resour. 2013; 3(3):43-47
  • 6 Koné WM, Soro D, Dro B, Yao K, Kamanzi K. Chemical Composition, Antioxidant, Antimicrobial And Acetylcholinesterase Inhibitory Properties of Lannea Barteri (Anacardiaceae). Australian Journal of Basic and Applied Sciences. 2011; 5(10):1516-1523
  • 7 Arbonnier M. Trees, shrubs and lianas of West African dry zones. 2002; CIRAD, Margraf Publishers Gmbh, MNHN, Paris.
  • 8 Doka IG, Yagi SM. Ethnobotanical Survey of Medicinal Plants in West Kordofan (Western Sudan). Ethno. Leaflets. 2009; 13:1409-1416.
  • 9 Le Houerou HN. In, Les fourrages ligneux en Afrique. (Le Houerou H.H. ed), 1980; pp. 85-104, CIPEA, Addis-Abeba.. Le role des ligneux fourragers dans les zones saheliennes et soudaniennes, 1980 ; CIPEA, Addis-Ababa.
  • 10 Michel A. Trees, shrubs, and lianas of West African dry zones. 2002; ACP-EU.
  • 11 Adoum OA. Determination of toxicity effects of some savannah plants using Brine Shrimp Test (BST). Int. J. Pure App. Sci. 2008, 2:1-5.
  • 12 Pedersen DS, Rosenbohm C. Dry Column Vacuum Chromatography. Syn. 2001; 2431-2434
  • 13 Schreiber K, Aurich O, Osske CL. Spray reagents in TLC analysis. J. Chrom. 1963; 12, 63.
  • 14 Lino A, Deogracious O. The in-vitro antibacterial activity of Annona senegalensis, Securidacca longipendiculata and Steanotaenia araliacea- Ugandan Medicinl plants. Afri. Health Sci. 2006; 6(1): 31-35
  • 15 Ajaiyeoba EO, Onocha PA, Nwozo SO, Sama W. Antimicrobial and cytotoxicity evaluation of Buchholzia coriacea stem bark. Fitoterapia. 2003; 74: 706-709.
  • 16 Rahmana SMM, Muktaa ZA, Hossain MA. Isolation and characterization of ß-sitosterol-D-glycoside from petroleum extract of the leaves of Ocimum sanctum L. Asian Journal of Food and Agro- Industry. 2009, 2(01): 39-43
  • 17 Kasal A, Budesinsky M, Griffiths WJ. In, Steroid Analysis. (Makin, H.L.J. and. Gower, DB., ed) 2006; pp. 27-156, Springer Science. Spectroscopic Methods of Steroid Analysis. 2006; Springer Science.
  • 18 Bilia AR, Mendez J, Morelli I. Phytochemical investigations of Licania genus. Flavonoids and triterpenoids from Licania carii. Pharm. Acta Helvetiae 1996; 71:191-197
  • 19 Wang Y, Lai D, Zhang Y, Kang A, Cao Y, Sun W. Study of steroidal saponins in Dioscorea zingiberensis C.H.Wright. J. Nat. Prod. 2009, 2:123-132
  • 20 Sen A, Dhavan P, Shukla KK, Singh S, Tejovathi G. Analysis of IR, NMR and Antimicrobial Activity of ß-Sitosterol Isolated from Momordica charantia. Sci. Secur. J. Biotech. 2012; 1(1): 9-13
  • 21 Shorr AF. Epidemiology and economic impact of meticillin-resistant Staphylococcus aureus: review and analysis of the literature. PharmacoEconomics. 2007; 25:751-68
  • 22 Marquart ME, Caballero AR, Chomnawang M, Thibodeaux BA, Twining SS, Callaghan RJ. Identification of a novel secreted protease from Pseudomonas aeruginosa that causes corneal erosions. Invest Ophthalmol Vis Sci. 2005; 46:3761-3768
  • 23 Usman H, Abdulrahman FI, Ladan AH. Phytochemical and Antimicrobial Evaluation of Tribulus terrestris L. (Zygophylaceae) Growing in Nigeria. Res. J Bio. Sci. 2007; 2(3): 244-247.
  • 24 Adamu AY, Ahmad AA, Olonitola OS. Resistance Patterns of Staphylococcus aureus and Pseudomonas aeruginosa to some Quinolones isolated in Kano, Nigeria. SWJ. 2009, 4(1): 27-31. Brooks GF, Butel JS, Morse SA. Jawetz, Melnick and Adelberg's Med. Micro. (2nd Edn), McGraw-Hill, New Delhi, India; 2002.