Digestive Disease Interventions 2020; 04(01): 053-059
DOI: 10.1055/s-0040-1708533
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Genomics and Interventional Oncology in Primary Liver Cancer

Ryan Slovak
1   Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
2   University of Connecticut School of Medicine, Farmington, Connecticut
,
Meaghan Dendy Case
1   Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
,
1   Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
3   Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
4   Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
› Author Affiliations
Funding H.S.K. is supported by the United States Department of Defense (CA160741). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Further Information

Publication History

02 January 2020

22 January 2020

Publication Date:
25 March 2020 (online)

Abstract

Personalized medicine is revolutionizing oncologic care. Molecular and imaging “fingerprinting” of cancer through genomics, radiomics, and radiogenomics has allowed for the meticulous characterization of many forms of malignancy, including primary liver cancers. With this data, treatments are being developed that precisely target and exploit key variations in individual tumors. As these methods continue to evolve, interventional oncologists are well positioned to capitalize on the advances being made. This article will provide a concise overview of the genomic, radiomic, and radiogenomic research on hepatocellular carcinoma and intrahepatic cholangiocarcinoma, in addition to discussions on how precision medicine would relate to interventional oncology.

 
  • References

  • 1 Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci 2018; 109 (03) 513-522
  • 2 Rizzo S, Botta F, Raimondi S. , et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2018; 2 (01) 36
  • 3 Pandey A, Pandey P, Varzaneh FN, Pour M, Shao N, Khoshpouri P. , et al. Volumetric functional MRI as new prognostic marker to predict survival in unresectable intrahepatic cholangiocarcinoma undergoing systemic chemotherapy: Long term single institution outcomes. 103rd Scientific Assembly and Annual Meeting of the RSNA; Chicago, IL: RSNA; 2017
  • 4 Sullivan KM, Kenerson HL, Pillarisetty VG, Riehle KJ, Yeung RS. Precision oncology in liver cancer. Ann Transl Med 2018; 6 (14) 285
  • 5 Rinninella E, Cerrito L, Spinelli I. , et al. Chemotherapy for hepatocellular carcinoma: current evidence and future perspectives. J Clin Transl Hepatol 2017; 5 (03) 235-248
  • 6 Ward AF, Braun BS, Shannon KM. Targeting oncogenic Ras signaling in hematologic malignancies. Blood 2012; 120 (17) 3397-3406
  • 7 Colombino M, Sperlongano P, Izzo F. , et al. BRAF and PIK3CA genes are somatically mutated in hepatocellular carcinoma among patients from South Italy. Cell Death Dis 2012 ; 1–3. DOI: 10.1200/PO.18.00238
  • 8 Zuo Q, Huang H, Shi M. , et al. Multivariate analysis of several molecular markers and clinicopathological features in postoperative prognosis of hepatocellular carcinoma. Anat Rec (Hoboken) 2012; 295 (03) 423-431
  • 9 Kalinina O, Marchio A, Urbanskii AI. , et al. Somatic changes in primary liver cancer in Russia: a pilot study. Mutat Res 2013; 755 (02) 90-99
  • 10 Khalaf AM, Fuentes D, Morshid AI. , et al. Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma 2018; 5: 61-73
  • 11 Takai A, Dang HT, Wang XW. Identification of drivers from cancer genome diversity in hepatocellular carcinoma. Int J Mol Sci 2014; 15 (06) 11142-11160
  • 12 Guichard C, Amaddeo G, Imbeaud S. , et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44 (06) 694-698
  • 13 Ahn SM, Jang SJ, Shim JH. , et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 2014; 60 (06) 1972-1982
  • 14 Subbiah IM, Falchook GS, Kaseb AO. , et al. Exploring response signals and targets in aggressive unresectable hepatocellular carcinoma: an analysis of targeted therapy phase 1 trials. Oncotarget 2015; 6 (29) 28453-28462
  • 15 Matter MS, Decaens T, Andersen JB, Thorgeirsson SS. Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J Hepatol 2014; 60 (04) 855-865
  • 16 Schoenleber SJ, Kurtz DM, Talwalkar JA, Roberts LR, Gores GJ. Prognostic role of vascular endothelial growth factor in hepatocellular carcinoma: systematic review and meta-analysis. Br J Cancer 2009; 100 (09) 1385-1392
  • 17 Zhang L, Huang G, Li X. , et al. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1α in hepatocellular carcinoma. BMC Cancer 2013; 13: 108
  • 18 Khemlina G, Ikeda S, Kurzrock R. The biology of hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer 2017; 16 (01) 149
  • 19 Harding JJ, Nandakumar S, Armenia J. , et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res 2019; 25 (07) 2116-2126
  • 20 Park YK, Song SK, Kim B-W, Park S-K, Chung C-W, Wang H-J. Prognostic significance of microvascular invasion in tumor stage for hepatocellular carcinoma. World J Surg Oncol 2017; 15 (01) 225
  • 21 Bakr S, Echegaray S, Shah R. , et al. Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging (Bellingham) 2017; 4 (04) 041303
  • 22 Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, Liu L. A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma. Diagn Interv Radiol 2018; 24 (03) 121-127
  • 23 Chen S, Zhu Y, Liu Z, Liang C. Texture analysis of baseline multiphasic hepatic computed tomography images for the prognosis of single hepatocellular carcinoma after hepatectomy: a retrospective pilot study. Eur J Radiol 2017; 90: 198-204
  • 24 Zhou Y, He L, Huang Y. , et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol (NY) 2017; 42 (06) 1695-1704
  • 25 West DL, Kotrotsou A, Niekamp AS. , et al. CT-based radiomic analysis of hepatocellular carcinoma patients to predict key genomic information. J Clin Oncol 2017; 35 (15) e15623
  • 26 Zhou W, Zhang L, Wang K. , et al. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J Magn Reson Imaging 2017; 45 (05) 1476-1484
  • 27 Renzulli M, Brocchi S, Cucchetti A. , et al. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?. Radiology 2016; 279 (02) 432-442
  • 28 Suh YJ, Kim MJ, Choi JY, Park MS, Kim KW. Preoperative prediction of the microvascular invasion of hepatocellular carcinoma with diffusion-weighted imaging. Liver Transpl 2012; 18 (10) 1171-1178
  • 29 Kim AY, Sinn DH, Jeong WK. , et al. Hepatobiliary MRI as novel selection criteria in liver transplantation for hepatocellular carcinoma. J Hepatol 2018; 68 (06) 1144-1152
  • 30 Banerjee S, Wang DS, Kim HJ. , et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology 2015; 62 (03) 792-800
  • 31 Jeong WK, Jamshidi N, Felker ER, Raman SS, Lu DS. Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol 2019; 25 (01) 21-29
  • 32 Villanueva A, Hoshida Y, Battiston C. , et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 2011; 140 (05) 1501-1512.e2
  • 33 Taouli B, Hoshida Y, Kakite S. , et al. Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. Eur Radiol 2017; 27 (11) 4472-4481
  • 34 Buettner S, van Vugt JLA, IJzermans JN, Groot Koerkamp B. Intrahepatic cholangiocarcinoma: current perspectives. OncoTargets Ther 2017; 10: 1131-1142
  • 35 Sia D, Hoshida Y, Villanueva A. , et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology 2013; 144 (04) 829-840
  • 36 Oliveira DV, Zhang S, Chen X, Calvisi DF, Andersen JB. Molecular profiling of intrahepatic cholangiocarcinoma: the search for new therapeutic targets. Expert Rev Gastroenterol Hepatol 2017; 11 (04) 349-356
  • 37 Yoshikawa D, Ojima H, Iwasaki M. , et al. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer 2008; 98 (02) 418-425
  • 38 Simile MM, Bagella P, Vidili G. , et al. Targeted therapies in cholangiocarcinoma: emerging evidence from clinical trials. Medicina (Kaunas) 2019; 55 (02) 42
  • 39 Walter D, Hartmann S, Waidmann O. Update on cholangiocarcinoma: potential impact of genomic studies on clinical management. Z Gastroenterol 2017; 55 (06) 575-581
  • 40 Rizvi S, Borad MJ, Patel T, Gores GJ. Cholangiocarcinoma: molecular pathways and therapeutic opportunities. Semin Liver Dis 2014; 34 (04) 456-464
  • 41 Asayama Y, Yoshimitsu K, Irie H. , et al. Delayed-phase dynamic CT enhancement as a prognostic factor for mass-forming intrahepatic cholangiocarcinoma. Radiology 2006; 238 (01) 150-155
  • 42 Lee J, Kim SH, Kang TW, Song KD, Choi D, Jang KT. Mass-forming intrahepatic cholangiocarcinoma: diffusion-weighted imaging as a preoperative prognostic marker. Radiology 2016; 281 (01) 119-128
  • 43 Pandey A, Pandey P, Varzaneh FN, Pour M, Shao N, Khoshpouri P. , et al. Volumetric functional MRI as new prognostic marker to predict survival in unresectable intrahepatic cholangiocarcinoma undergoing systemic chemotherapy: long term single institution outcomes. 103rd Scientific Assembly and Annual Meeting of the RSNA; Chicago, IL: RSNA; 2017
  • 44 Sadot E, Simpson AL, Do RKG. , et al. Cholangiocarcinoma: correlation between molecular profiling and imaging phenotypes. PLoS One 2015; 10 (07) e0132953
  • 45 Idris T, Barghash M, Kotrotsou A. , et al. CT-based radiogenomic signature to identify isocitrate dehydrogenase (IDH)1/2 mutations in advanced intrahepatic cholangiocarcinoma. J Clin Oncol 2019; 37 (15) 4081
  • 46 Lee JM, Han JJ, Altwerger G, Kohn EC. Proteomics and biomarkers in clinical trials for drug development. J Proteomics 2011; 74 (12) 2632-2641
  • 47 McCall SJ, Dry SM. Precision pathology as part of precision medicine: are we optimizing patients' interests in prioritizing use of limited tissue samples?. JCO Precision Oncol 2019; 1-6 . DOI: 10.1200/PO.18.00238
  • 48 Marshall D, Laberge JM, Firetag B, Miller T, Kerlan RK. The changing face of percutaneous image-guided biopsy: molecular profiling and genomic analysis in current practice. J Vasc Interv Radiol 2013; 24 (08) 1094-1103
  • 49 Tam AL, Lim HJ, Wistuba II. , et al. Image-guided biopsy in the era of personalized cancer care: proceedings from the society of interventional radiology research consensus panel. J Vasc Interv Radiol 2016; 27 (01) 8-19
  • 50 Ziv E, Durack JC, Solomon SB. The importance of biopsy in the era of molecular medicine. Cancer J 2016; 22 (06) 418-422
  • 51 Gaba RC, Groth JV, Parvinian A, Guzman G, Casadaban LC. Gene expression in hepatocellular carcinoma: pilot study of potential transarterial chemoembolization response biomarkers. J Vasc Interv Radiol 2015; 26 (05) 723-732
  • 52 Lin M, Tian MM, Zhang WP, Xu L, Jin P. Predictive values of diffusion-weighted imaging and perfusion-weighted imaging in evaluating the efficacy of transcatheter arterial chemoembolization for hepatocellular carcinoma. OncoTargets Ther 2016; 9: 7029-7037
  • 53 Ziv E, Erinjeri JP, Yarmohammadi H. , et al. Lung adenocarcinoma: predictive value of KRAS mutation status in assessing local recurrence in patients undergoing image-guided ablation. Radiology 2017; 282 (01) 251-258
  • 54 Lahti SJ, Xing M, Zhang D, Lee JJ, Magnetta MJ, Kim HS. KRAS status as an independent prognostic factor for survival after Yttrium-90 radioembolization therapy for unresectable colorectal cancer liver metastases. J Vasc Interv Radiol 2015; 26 (08) 1102-1111
  • 55 Wáng Y-XJ, De Baere T, Idée J-M, Ballet S. Transcatheter embolization therapy in liver cancer: an update of clinical evidences. Chin J Cancer Res 2015; 27 (02) 96-121
  • 56 Erinjeri JP, Fine GC, Adema GJ. , et al. Immunotherapy and the interventional oncologist: challenges and opportunities—a society of interventional oncology white paper. Radiology 2019; 292 (01) 25-34