CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2020; 55(06): 771-777
DOI: 10.1055/s-0040-1708520
Artigo Original
Joelho

Biomechanical Study of Different Femoral Fixation Devices in the Reconstruction of the Medial Patellofemoral Ligament in Porcine Knees[*]

Article in several languages: português | English
1   Serviço de Cirurgia do Joelho, Instituto de Ortopedia e Traumatologia (IOT), Hospital São Vicente de Paulo (HSVP), Universidade Federal da Fronteira Sul (UFFS), Passo Fundo, RS, Brasil
,
1   Serviço de Cirurgia do Joelho, Instituto de Ortopedia e Traumatologia (IOT), Hospital São Vicente de Paulo (HSVP), Universidade Federal da Fronteira Sul (UFFS), Passo Fundo, RS, Brasil
,
1   Serviço de Cirurgia do Joelho, Instituto de Ortopedia e Traumatologia (IOT), Hospital São Vicente de Paulo (HSVP), Universidade Federal da Fronteira Sul (UFFS), Passo Fundo, RS, Brasil
,
1   Serviço de Cirurgia do Joelho, Instituto de Ortopedia e Traumatologia (IOT), Hospital São Vicente de Paulo (HSVP), Universidade Federal da Fronteira Sul (UFFS), Passo Fundo, RS, Brasil
,
3   Departamento de Engenharia Mecânica, Universidade de Passo Fundo, Passo Fundo, RS, Brasil
4   Programa de Pós-Graduação em Projeto e Processos de Fabricação, Universidade de Passo Fundo, Passo Fundo, RS, Brasil
,
2   Serviço de Ortopedia e Traumatologia, Santa Casa de Misericórdia de Porto Alegre, RS, Brasil
3   Departamento de Engenharia Mecânica, Universidade de Passo Fundo, Passo Fundo, RS, Brasil
4   Programa de Pós-Graduação em Projeto e Processos de Fabricação, Universidade de Passo Fundo, Passo Fundo, RS, Brasil
5   Departamento de Clínica Cirúrgica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
› Author Affiliations

Abstract

Objective To evaluate different femoral fixation devices for medial patellofemoral ligament reconstruction and compare their effectiveness regarding fixation strength up to failure in porcine knees.

Methods Thirty porcine knees were used, divided into three groups of 10 knees. The removed grafts were dissected from the extensor tendons of porcine feet. In each group, the graft was fixed to the femur with an interference screw, an anchor, or adductor tenodesis. The three methods were subjected to biomechanical tests using a universal Tensile testing machine at a speed of 20 mm/minute.

Results The highest average linear resistance under lateral traction occurred in group 1, “screw fixation” (185.45 ± 41.22 N), followed by group 2, “anchor fixation” (152.97 ± 49, 43 N); the lower average was observed in group 3, “tenodesis fixation” (76.69 ± 18.90 N). According to the fixed error margin (5%), there was a significant difference between groups (p < 0.001); in addition, multiple comparison tests (between group pairs) also showed significant differences. Variability was small, since the variance coefficient was lower than 33.3%.

Conclusion Interference screws in bone tunnels and mountable anchors fixation with high resistance wire are strong enough for femoral fixation in porcine medial patellofemoral ligament reconstruction. Adductor tenodesis, however, was deemed fragile for such purpose.

* Work performed at Hospital São Vicente de Paulo (HSVP-RS), Instituto de Ortopedia e Traumatologia de Passo Fundo (IOT-RS) and Laboratory of Bioengineering, Biomechanics and Biomaterials at the Universidade de Passo Fundo (UPF).




Publication History

Received: 08 October 2019

Accepted: 12 December 2019

Article published online:
22 July 2020

© 2020. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Gomez JL, Marczyk LR, Cesar PC, Jungblut CF. Reconstrução do ligamento patelofemoral medial: sua indicação na luxação da patela. Rev Bras Ortop 2003; 38 (1/2): 56-66
  • 2 Criscenti G, De Maria C, Sebastiani E. et al. Material and structural tensile properties of the human medial patello-femoral ligament. J Mech Behav Biomed Mater 2016; 54: 141-148
  • 3 Arendt EA, Moeller A, Agel J. Clinical outcomes of medial patellofemoral ligament repair in recurrent (chronic) lateral patella dislocations. Knee Surg Sports Traumatol Arthrosc 2011; 19 (11) 1909-1914
  • 4 Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee 2003; 10 (03) 215-220
  • 5 Fithian DC, Gupta N. Patellar instability: principles of soft tissue repair and reconstruction. Tech Knee Surg 2006; 5: 19-26
  • 6 Scott WN. Insall & Scott cirurgia do joelho. 5° ed. Rio de Janeiro: Elsevier; 2015
  • 7 Placella G, Pace V, Foster P. Reconstruction of the medial patellofemoral ligament reconstruction for patients with recurrent patellar dislocation: review of surgical techniques and tips to achieve successful reconstruction. Ann Transl Med 2016; 4 (24) 540
  • 8 Shah JN, Howard JS, Flanigan DC, Brophy RH, Carey JL, Lattermann C. A systematic review of complications and failures associated with medial patellofemoral ligament reconstruction for recurrent patellar dislocation. Am J Sports Med 2012; 40 (08) 1916-1923
  • 9 Burrus MT, Werner BC, Conte EJ, Diduch DR. Troubleshooting the Femoral Attachment During Medial Patellofemoral Ligament Reconstruction: Location, Location, Location. Orthop J Sports Med 2015; 3 (01) 2325967115569198
  • 10 Yercan HS, Erkan S, Okcu G, Ozalp RT. A novel technique for reconstruction of the medial patellofemoral ligament in skeletally immature patients. Arch Orthop Trauma Surg 2011; 131 (08) 1059-1065
  • 11 Witoński D, Kęska R, Synder M, Sibiński M. An isolated medial patellofemoral ligament reconstruction with patellar tendon autograft. BioMed Res Int 2013; 2013: 637678
  • 12 Yang DL, Cheon SH, Oh CW, Kyung HS. A comparison of the fixation strengths provided by different intraosseous tendon lengths during anterior cruciate ligament reconstruction: a biomechanical study in a porcine tibial model. Clin Orthop Surg 2014; 6 (02) 173-179
  • 13 Ayzenberg M, Arango D, Gershkovich GE, Samuel PS, Saing M. Pullout strength of a novel hybrid fixation technique (Tape Locking Screw™) in soft-tissue ACL reconstruction: A biomechanical study in human and porcine bone. Orthop Traumatol Surg Res 2017; 103 (04) 591-595
  • 14 Lee YS, Han SH, Kim JH. A biomechanical comparison of tibial back side fixation between suspensory and expansion mechanisms in trans-tibial posterior cruciate ligament reconstruction. Knee 2012; 19 (01) 55-59
  • 15 Herbort M, Heletta S, Raschke MJ. et al. Accidental perforation of the lateral femoral cortex in ACL reconstruction: an investigation of mechanical properties of different fixation techniques. Arthroscopy 2012; 28 (03) 382-389
  • 16 Posner M, Owens B, Johnson P. et al. Comparison of Pull-out Strength for Different Bone Block Length in a Porcine Anterior Cruciate Ligament Model. Orthop J Sports Med 2014; 2 (05) 2325967114532762
  • 17 Shen HC, Chang JH, Lee CH. et al. Biomechanical comparison of Cross-pin and Endobutton-CL femoral fixation of a flexor tendon graft for anterior cruciate ligament reconstruction--a porcine femur-graft-tibia complex study. J Surg Res 2010; 161 (02) 282-287
  • 18 Placella G, Tei M, Sebastiani E. et al. Anatomy of the Medial Patello-Femoral Ligament: a systematic review of the last 20 years literature. Musculoskelet Surg 2015; 99 (02) 93-103
  • 19 Stalder M, Farshad M, Snedeker JG, Meyer DC. Interference screws should be shorter than the hamstring tendon graft in the bone tunnel for best fixation. Knee Surg Sports Traumatol Arthrosc 2013; 21 (03) 584-588
  • 20 Cirino LM. Manual de técnica cirúrgia para a graduação. São Paulo: Sarvier; 2006
  • 21 Sano H, Takahashi A, Chiba D, Hatta T, Yamamoto N, Itoi E. Stress distribution inside bone after suture anchor insertion: simulation using a three-dimensional finite element method. Knee Surg Sports Traumatol Arthrosc 2013; 21 (08) 1777-1782
  • 22 Altman DG. Practical Statistics for Medical Research. London: CRC Press; 1991
  • 23 Barber FA, Herbert MA, Richards DP. Sutures and suture anchors: update 2003. Arthroscopy 2003; 19 (09) 985-990
  • 24 Rupp S, Georg T, Gauss C, Kohn D, Seil R. Fatigue testing of suture anchors. Am J Sports Med 2002; 30 (02) 239-247
  • 25 LaPrade RF, Gilbert TJ, Bollom TS, Wentorf F, Chaljub G. The magnetic resonance imaging appearance of individual structures of the posterolateral knee. A prospective study of normal knees and knees with surgically verified grade III injuries. Am J Sports Med 2000; 28 (02) 191-199
  • 26 Su WR, Chu CH, Lin CL, Lin CJ, Jou IM, Chang CW. The modified finger-trap suture technique: a biomechanical comparison of a novel suture technique for graft fixation. Arthroscopy 2012; 28 (05) 702-710
  • 27 Kim MK, Na SI, Lee JM, Park JY. Comparison of bioabsorbable suture anchor fixation on the tibial side for anterior cruciate ligament reconstruction using free soft tissue graft: experimental laboratory study on porcine bone. Yonsei Med J 2014; 55 (03) 760-765