Synthesis 2020; 52(16): 2330-2336
DOI: 10.1055/s-0040-1707398
feature
© Georg Thieme Verlag Stuttgart · New York

Efficient Heterogeneous Palladium-Catalyzed Transfer Hydrogenolysis of Benzylic Alcohols by Formic Acid

Samson Afewerki  ‡
Mid Sweden University, Department of Natural Sciences, Holmgatan 10, 851 70 Sundsvall, Sweden   Email: [email protected]   Email: [email protected]
,
Carlos Palo-Nieto ‡
,
Mid Sweden University, Department of Natural Sciences, Holmgatan 10, 851 70 Sundsvall, Sweden   Email: [email protected]   Email: [email protected]
› Author Affiliations
We are grateful for the financial support from the European Union and Mid Sweden University (Mittuniversitetet).
Further Information

Publication History

Received: 27 March 2020

Accepted after revision: 28 April 2020

Publication Date:
20 May 2020 (online)


These authors contributed equally to this work

Abstract

An efficient heterogeneous palladium-catalyzed transfer hydrogenolysis­ of primary, secondary, and tertiary benzylic alcohols using formic acid as hydrogen source has been developed. The resulting hydrocarbon products were obtained in excellent yields. Moreover, the system exhibits high chemoselectivity, reacting only with the hydroxy groups in the presence of other functional groups, and excellent re­cyclability.

Supporting Information

 
  • References

  • 1 Ranade VS, Prins R. Chem. Eur. J. 2000; 6: 313
  • 2 Yasuda M, Onishi Y, Ueba M, Miyai T, Baba A. J. Org. Chem. 2001; 66: 7741
  • 3 Muzart J. Tetrahedron 2005; 40: 9423
  • 4 Chen H, Lin Y, Chen G, Hu G, Wang L, Vrijmoed LL. P. Chem. Nat. Compd. 2006; 42: 407
  • 5 Thakar N, Polder NF, Djanashvili K, Bekkum H, Kapteijn F, Moulijn JA. J. Catal. 2007; 246: 344
  • 6 Schlaf M. Dalton Trans. 2006; 39: 4645
  • 7 Jian F, Jinbo W, Yafen Z, Haiyan F, Hua C, Xianjun L. Chem. Lett. 2007; 36: 1274
  • 8 Jian F, Maolin Y, Hua C, Xianjun L. Prog. Chem. 2007; 19: 651
  • 9 Herrmann JM, König B. Eur. J. Org. Chem. 2013; 7017
  • 10 Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K. Chem. Rev. 2018; 118: 614
  • 11 Fu J, Lym J, Zheng W, Alexopoulos K, Mironenko AV, Li N, Bocoboinik A, Su D, Weber RT, Vlachos DG. Nat. Catal. 2020; 3: 446
  • 12 Takada Y, Caner J, Naka H, Saito S. Pure Appl. Chem. 2018; 90: 167
  • 13 Musolino MG, Scarpino LA, Mauriello F, Pietropaolo R. Green Chem. 2009; 11: 1511
  • 14 Baán Z, Potor A, Cwik A, Hell Z, Keglevich G, Finta Z, Hermecz I. Synth. Commun. 2008; 38: 1601
  • 15 Zinovyev S, Shelepchikov A, Tundo P. Appl. Catal., B. 2007; 72: 289
  • 16 Feng J, Yang C, Zhang D, Wang J, Fu H, Chen H, Li X. Appl. Catal., A. 2009; 354: 38
  • 17 Sawadjoon S, Lundstedt A, Samec JS. ACS Catal. 2013; 3: 635
  • 18 Liu X, Lu G, Guo Y, Guo Y, Wang Y, Wang X. J. Mol. Catal. A: Chem. 2006; 252: 176
  • 19 Panagiotopoulou P, Vlachos DG. Appl. Catal. A. 2014; 480: 17
  • 20 Jae J, Zheng W, Karim AM, Guo W, Lobo RF, Vlachos DG. ChemCatChem 2014; 6: 848
  • 21 Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
  • 22 Ping EW, Wallace R, Pierson J, Fuller TF, Jones CW. Micropor. Mesopor. Mat. 2010; 132: 174
  • 23 Shakeri M, Tai C.-W, Göthelid E, Oscarsson S, Bäckvall J.-E. Chem. Eur. J. 2011; 17: 13269
  • 24 Johnston EV, Verho O, Kärkäs MD, Shakeri M, Tai C.-W, Palmgren P, Eriksson K, Oscarsson S, Bäckvall J.-E. Chem. Eur. J. 2012; 18: 12202
  • 25 Long W, Brunelli NA, Didas SA, Ping EW, Jones CW. ACS Catal. 2013; 3: 1700
  • 26 Engström K, Johnston EV, Verho O, Gustafson KP. J, Shakeri M, Tai C.-W, Bäckvall J.-E. Angew. Chem. Int. Ed. 2013; 52: 14006
  • 27 Verho O, Nagendiran A, Johnston EV, Tai C.-W, Bäckvall J.-E. ChemCatChem 2013; 5: 612
  • 28 Li M.-B, Yang Y, Rafi A, Oschmann M, Grape ES, Inge K, Córdova A, Bäckvall J.-E. Angew. Chem. Int. Ed. 2020; 59 DOI: in press; 10.1002/anie.202001809.
  • 29 Nagendiran A, Pascanu V, Bermejo Gomez A, Gonzalez Miera G, Tai C.-W, Verho O, Martin-Matute B, Bäckvall J.-E. Chem. Eur. J. 2016; 22: 7184
  • 30 Volkov A, Gustafson KP, Tai C.-W, Verho O, Bäckvall J.-E, Adolfsson H. Angew. Chem. Int. Ed. 2015; 54: 5122
  • 31 Verho O, Gustafson KP. J, Nagendiran A, Tai C.-W, Bäckvall J.-E. ChemCatChem 2014; 6: 3153
  • 32 Deiana L, Afewerki S, Palo-Nieto C, Verho S, Johnston EV, Córdova A. Sci. Rep. 2012; 2: 851
  • 33 Ma G, Afewerki S, Deiana L, Palo-Nieto C, Liu L, Sun J, Ibrahem I. Angew. Chem. Int. Ed. 2013; 52: 6050
  • 34 Deiana L, Jiang Y, Palo-Nieto C, Afewerki S, Incerti-Pradillos CA, Verho O, Tai C.-W, Johnston EV, Córdova A. Angew. Chem. Int. Ed. 2014; 53: 3447
  • 35 Deiana L, Ghisu L, Afewerki S, Verho O, Johnston EV, Hedin N, Bacsik Z, Córdova A. Adv. Synth. Catal. 2014; 356: 2485
  • 36 Deiana L, Ghisu L, Córdova O, Afewerki S, Zhang R, Córdova A. Synthesis 2014; 46: 1303
  • 37 Palo-Nieto C, Afewerki S, Anderson M, Tai C.-W, Berglund P, Córdova A. ACS Catal. 2016; 6: 3932
  • 38 Santoro S, Deiana L, Zhao G.-L, Lin S, Himo F, Córdova A. ACS Catal. 2014; 4: 4474
  • 39 Zhang D, Liu J, Córdova A, Liao W.-W. ACS Catal. 2017; 7: 7051
  • 40 A patent has been approved: Córdova A, Afewerki S, Palo-Nieto C. WO2016066835A1, 2016 , priority date: 2014-10-30
  • 41 Icker M, Fricke P, Grell T, Hollenbach J, Auer H, Berger S. Magn. Reson. Chem. 2013; 51: 815
  • 42 Buser JY, McFarland AD. Chem. Commun. 2014; 50: 4234
  • 43 Lancaster JR, Smilowitz R, Turro NJ, Koberstein JT. Photochem. Photobiol. 2014; 90: 394
  • 44 Nyquist R. Appl. Spectrosc. 1991; 45: 1649
  • 45 Eisch JJ, Dutta S. Organometallics 2005; 24: 3355