Synthesis, Table of Contents Synthesis 2021; 53(01): 182-192DOI: 10.1055/s-0040-1707351 paper © Georg Thieme Verlag Stuttgart · New York Diastereoselective Synthesis of Alkylated 1,4-Cyclohexadiene Esters Using Epimeric Pyrroloimidazolones Ngan Tran , Dusty Cadwallader , Costa Metallinos∗ Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada Email: cmetallinos@brocku.ca › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A pair of ortho-benzoate esters containing epimeric pyrroloimidazolones undergo sequential Birch reduction and diastereoselective alkylation to provide products ranging from 88:12 to >95:5 diastereomeric ratio (dr) for the syn-epimer, and 50:50 to 95:5 dr for the anti-epimer. The stereochemistry of the products is confirmed by a combination of X-ray crystallography on a key anti-epimer-derived product, in combination with specific rotation measurements of enantiomers that are prepared from the syn or anti starting materials. A diastereomerically pure allyl-substituted substrate is shown to undergo Cope rearrangement, which transposes the quaternary chiral center to a remote position without racemization. This work is complementary to asymmetric reductive alkylation reported previously by Schultz using anisole substrates with chiral benzamide auxiliaries in that the pyrroloimidazolones act as surrogates for the methoxy group. Key words Key wordsBirch reduction - asymmetric - alkylation - lithiation - diastereoselective - epimeric - pyrroloimidazolone - Cope rearrangement Full Text References References 1a Rabideau PW, Marcinow Z. Org. React. 1992; 42: 1 1b Birch AJ. J. Chem. Soc. 1944; 430 1c Birch AJ. Pure Appl. Chem. 1996; 68: 553 1d Hook JM, Mander LN. Nat. Prod. Rep. 1986; 3: 35 For Birch reduction in three recent syntheses of herquline B and C, see: 2a He C, Stratton TP, Baran PS. J. Am. Chem. Soc. 2019; 141: 29 2b Cox JB, Kimishima A, Wood JL. J. Am. Chem. Soc. 2019; 141: 25 2c Zhu X, McAtee CC, Schindler CS. J. Am. Chem. Soc. 2019; 141: 3409 3a Birch AJ. J. Chem. Soc. 1950; 1551 3b Nelson NA, Fassnacht JH, Piper JU. J. Am. Chem. Soc. 1961; 83: 206 3c Bachi MD, Epstein JW, Herzberg-Minzly Y, Loewenthal HJ. E. J. Org. Chem. 1969; 34: 126 4a Hook JM, Mander LN, Woolias M. Tetrahedron Lett. 1982; 23: 1095 4b Schultz AG, Dittami PJ, Lavieri FP, Salowey C, Sundararaman P, Szymula MB. J. Org. Chem. 1983; 49: 4429 5 Schultz AG, Macielag M. J. Org. Chem. 1986; 51: 4983 6 Job A, Janeck CF, Bettray W, Peters R, Enders D. Tetrahedron 2002; 58: 2253 7a Schultz AG, Sundararaman P. Tetrahedron Lett. 1984; 25: 4591 7b Schultz AG, Sundararaman P, Macielag M, Lavieri FP, Welch M. Tetrahedron Lett. 1985; 26: 4575 8 Schultz AG, Macielag M, Sundararaman P, Taveras AG, Welch M. J. Am. Chem. Soc. 1988; 110: 7828 9 Schultz AG, Puig S. J. Org. Chem. 1985; 50: 915 10 Schultz AG, Holoboski MA, Smyth MS. J. Am. Chem. Soc. 1996; 118: 6210 11 Schultz AG, Pettus L. J. Org. Chem. 1997; 62: 6855 12 Schultz AG, Wang A. J. Am. Chem. Soc. 1998; 120: 8259 13a Schultz AG. Acc. Chem. Res. 1990; 23: 207 13b Schultz AG. Chem. Commun. 1999; 1263 14a Metallinos C, John J, Zaifman J, Emberson K. Adv. Synth. Catal. 2012; 354: 602 14b Metallinos C, John J, Nelson J, Dudding T, Belding L. Adv. Synth. Catal. 2013; 355: 1211 15 Wilson-Konderka C, Doxtator K, Metallinos C. Adv. Synth. Catal. 2016; 358: 2599 16a Emberson K, Tran N, Metallinos C. Synlett 2017; 28: 2901 16b Sechi M. L., Andrade M., Foy H., Pilkington M., Dudding T., Metallinos C.; Adv. Synth. Catal.; 2020, 362: in press; DOI: org/10.1002/adsc.202000574 17 Spletstoser J, White J, Tunoori A, Georg G. J. Am. Chem. Soc. 2007; 129: 3408 18 Although the 1H NMR spectra of syn- and anti-13 imply that the products are produced in >95:5 dr, stereochemistry α to the ester was not assigned because of the expected tenuous configurational stability at this position. The stereochemistry of syn- and anti-13 are not relevant in either case considering that the subsequent alkylation step results in products with configurational stability. 19 Use of LHMDS, NaHMDS, or KHMDS in place of LDA did not result in improvement of diastereomeric ratio. 20 Malachowski WP, Banerji M. Tetrahedron Lett. 2004; 45: 8183 21 CCDC 2002535 (19) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 22 Butora G, Reed JW, Hudlicky T, Brammer LE. Jr, Higgs PI, Simmons DP, Heard NE. J. Am. Chem. Soc. 1997; 119: 7694 23 John J, Wilson-Konderka C, Metallinos C. Adv. Synth. Catal. 2015; 357: 2071 24 Burchat AF, Chong JM, Nielsen N. J. Organomet. Chem. 1997; 542: 281 25 Buchwald SL, LaMaire SJ, Nielsen RB, Watson BT, King SM. Org. Synth. 1993; 71: 77 26 For the preparation of 10, 11, and syn/anti-12, see also: Wilson-Konderka C. M.Sc. Thesis . Brock University; Canada: 2016 Supplementary Material Supplementary Material Supporting Information