CC BY-NC-ND 4.0 · SynOpen 2020; 04(04): 66-70
DOI: 10.1055/s-0040-1707305
letter

A Diastereoselective Synthetic Approach towards the Synthesis of Berkeleylactone F and Its 4-epi-Derivative

Srijana Subba
a  Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India   Email: [email protected]
,
Sumit Saha
a  Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India   Email: [email protected]
,
Susanta Mandal
b  Department of Chemistry, Sikkim University, Tadong, Gangtok, Sikkim737102, India
› Author Affiliations
The Department of Science and Technology, Ministry of Science and Technology, India (INSPIRE Faculty Award- IFA 12-CH 45) is gratefully acknowledged for financial support.


Abstract

A diastereoselective approach to the synthesis of berkeleylactone F is presented. The synthetic strategy is initiated with commercially available (R)-glycidol, 1,6-heptadiyne, and (R)-(+)-methyl lactate. The key feature of the approach is directional functionalization at both terminals of 1,6-heptadiyne.

Supporting Information



Publication History

Received: 27 August 2020

Accepted after revision: 14 September 2020

Publication Date:
07 October 2020 (online)

© 2020. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Laslop NV, Mankin AS. Trends Biochem. Sci. 2018; 43: 668
    • 1b Kanoh S, Rubin BK. Clin. Microbiol. Rev. 2010; 23: 590
    • 1c Przybylski P. Curr. Org. Chem. 2011; 15: 328
    • 1d Gaynor M, Mankin AS. Curr. Top. Med. Chem. 2003; 3: 949
    • 2a Feng Y, Yu Z, Zhang S, Xue Z, Huang J, Zhang H, Wan X, Chen A, Wang J. J. Agric. Food Chem. 2019; 67: 4782
    • 2b Arsic B, Barber J, Čikoš A, Mladenovic M, Stankovic N, Novak P. Int. J. Antimicrob. Agents 2018; 51: 283
    • 2c Cheng H, Huang H, Huang G. Eur. J. Med. Chem. 2018; 157: 925
    • 2d Gao H, Huang G. Bioorg. Med. Chem. 2018; 26: 5578
    • 2e Hajare AK, Ravikumar V, Khaleel S, Bhuniya D, Reddy DS. J. Org. Chem. 2011; 76: 963
    • 2f Sugamata R, Sugawara A, Nagao T, Suzuki K, Hirose T, Yamamoto K, Oshima M, Kobayashi K, Sunazuka T, Akagawa KS, Omura S, Nakayama T, Suzuki K. J. Antibiot. 2014; 67: 213
    • 2g Pan JJ, Wana X, Zhang SY, Huang J, Zhang H, Chen AL, Wang JD. Bioorg. Med. Chem. Lett. 2016; 26: 3376
    • 2h Yadav JS, Das SK, Sabitha G. J. Org. Chem. 2012; 77: 11109
    • 3a Michel KH, Demoarco PV, Nagarajan R. J. Antibiot. 1977; 30: 571
    • 3b Chatterjee S, Subramanian M, Sharma A, Chattopadhyay S. Nat. Prod. Commun. 2018; 13: 1535
    • 3c Chatterjee S, Sharma A, Chattopadhyay S. RSC Adv. 2014; 4: 42697
    • 3d Reddy R, Suman D, Rao NN. Synlett 2012; 23: 272
    • 3e Saidhareddya P, Shaw AK. RSC Adv. 2015; 5: 29114
    • 4a Baoa J, Xua XY, Zhanga XY, Qi SH. Nat. Prod. Commun. 2013; 8: 1127
    • 4b Talakokkula A, Baikadi K, Narsaiah AV. ARKIVOC 2019; 307
    • 4c Jena BK, Reddy GS, Mohapatra DK. Org. Biomol. Chem. 2017; 15: 1863
    • 4d Kandimalla SR, Reddy BV. S, Sabitha G. Synth. Commun. 2019; 49: 3191
    • 5a Stierle AA, Stierle DB, Decato D, Priestley ND, Alverson JB, Hoody J, McGrath K, Klepacki D. J. Nat. Prod. 2017; 80: 1150
    • 5b Ferko B, Zeman M, Formica M, Veselý S, Doháňošová J, Moncol J, Olejníková P, Berkeš D, Jakubec P, Dixon DJ, Caletková O. J. Org. Chem. 2019; 84: 7159
    • 5c Reddy MS, Manikanta G, Krishna PR. Tetrahedron Lett. 2019; 60: 504
    • 6a Sudina PR, Motati DR, Seema A. J. Nat. Prod. 2018; 81: 1399
    • 6b Krishna PR, Prabhakar S, Ramana DV. Tetrahedron Lett. 2012; 53: 6843
    • 6c Venkatraman L, Aldrich CC, Sherman DH, Fecik RA. J. Org. Chem. 2005; 70: 7267
    • 6d Reddy CR, Suman D, Rao NN. Eur. J. Org. Chem. 2013; 3786
    • 6e Avocetien KF, Li JJ, Liu X, Wang Y, Xing Y, O’Doherty GA. Org. Lett. 2016; 18: 4970
    • 7a Jiang S, Liu ZH, Sheng G, Zeng BB, Cheng XG, Wu YL, Yao ZJ. J. Org. Chem. 2002; 67: 3404
    • 7b Liau BB, Gnanadesikan V, Corey EJ. Org. Lett. 2008; 10: 1055
    • 7c Maezaki N, Tominaga H, Kojima N, Yanai M, Urabe D, Tanaka T. Chem. Commun. 2004; 406
    • 7d Maezaki N, Tominaga H, Kojima N, Yanai M, Urabe D, Ueki R, Tanaka T, Yamori T. Chem. Eur. J. 2005; 11: 6237
    • 7e Falck JR, Wallukat G, Puli N, Goli M, Arnold C, Konkel A, Rothe M, Fischer R, Müller DN, Schunck WH. J. Med. Chem. 2011; 54: 4109
    • 7f Liu HX, Huang GR, Zhang HM, Jiang S, Wu JR, Yao ZJ. ChemBioChem 2007; 8: 172
    • 7g Jiang S, Li Y, Chen XG, Hu TS. Wu Y. L, Yao ZJ. Angew. Chem. Int. Ed. 2004; 43: 329
    • 7h Zhao H, Gorman JS. T, Pagenkopf BL. Org. Lett. 2006; 8: 4379
    • 8a González-Gil I, Zian D, Vázquez-Villa H, Hernández-Torres G, Martínez RF, Khiar-Fernández N, Rivera R, Kihara Y, Devesa I, Mathivanan S, Rosell del Valle C, Zambrana-Infantes E, Puigdomenech M, Cincilla G, Sanchez-Martinez M, Rodríguez de Fonseca F, Ferrer-Montiel AV, Chun J, López-Vales R, López-Rodríguez ML, Ortega-Gutiérrez S. J. Med. Chem. 2020; 63: 2372
    • 8b Iio K, Sachimori S, Watanabe T, Fuwa H. Org. Lett. 2018; 20: 7851
    • 8c Shiina I, Takasuna Y, Suzuki R, Oshiumi H, Komiyama Y, Hitomi S, Fukui H. Org. Lett. 2006; 8: 5279
    • 8d Ramulu U, Ramesh D, Rajaram S, Reddy SP, Venkatesham K, Venkateswarlu Y. Tetrahedron: Asymmetry 2012; 23: 117
    • 9a Léséleuc M, Godin E, Parisien-Collette S, Lévesque A, Collins SK. J. Org. Chem. 2016; 81: 6750
    • 9b Shin D, Yang JE, Lee SB, Nho CW. Bioorg. Med. Chem. Lett. 2010; 20: 7549
    • 9c Peňaška T, Koukal P, Kotora M. Eur. J. Org. Chem. 2018; 147
    • 9d Reddy KS. N, Reddy AY, Sabitha G. Synthesis 2016; 48: 3812
    • 9e Trost BM, Sieber JD, Qian W, Dhawan R, Ball ZT. Angew. Chem. Int. Ed. 2009; 48: 5478
    • 9f Wu J, Wu Y, Jian Y, Zhang Y. Chin. J. Chem. 2009; 27: 13
    • 10a Mengel A, Reiser O. Chem. Rev. 1999; 99: 1191
    • 10b Guillarme S, Plé K, Banchet A, Liard A, Haudrechy A. Chem. Rev. 2006; 106: 2355
    • 11a Beemelmanns C, Woznica A, Alegado RA, Cantley AM, King N, Clardy J. J. Am. Chem. Soc. 2014; 136: 10210
    • 11b Porta A, Chiesa F, Quaroni M, Persico M, Moratti R, Zanoni G, Vidari G. Eur. J. Org. Chem. 2014; 2111
    • 12a Sabitha G, Reddy CN, Gopal P, Yadav JS. Tetrahedron Lett. 2010; 51: 5736
    • 12b Raghavan S, Yelleni MK. R. Tetrahedron 2017; 73: 4371
    • 12c Rao JP, Rao BV. Tetrahedron: Asymmetry 2010; 21: 930
    • 12d Kumar P, Naidu SV. J. Org. Chem. 2006; 71: 3935
    • 12e Roush WR, Bennett CE, Roberts SE. J. Org. Chem. 2001; 66: 6389
    • 12f Allu SR, Banne S, Jiang J, Qi N, Guo J, He Y. J. Org. Chem. 2019; 84: 7227
    • 12g Kim D, Lee J, Shim PJ, Lim JI, Jo H, Kim S. J. Org. Chem. 2002; 67: 764
    • 12h Reetz MT. Angew. Chem., Int. Ed. Engl. 1984; 23: 556
  • 13 Synthesis of (S)-1-(Benzyloxy)deca-4,9-diyn-2-ol (4): To a solution of 1,6-heptadiyne (0.5 mL, 4.57 mmol, 1.0 equiv) in anhydrous THF (10 mL) at –78 °C under argon was added n-BuLi (4.6 mL, 4.6 mmol, 1.0 M in hexane 1 equiv). The resulting mixture was stirred for 30 min at this temperature and a solution of epoxide 3 (250 mg, 1.52 mmol, 0.33 equiv, dissolved in anhydrous THF, 5 mL) was added dropwise, followed by rapid addition of BF3·Et2O (freshly distilled, 0.6 mL, 6.66 mmol, 1.45 equiv) The reaction mixture was stirred for 1.5 h and then quenched with saturated aqueous NH4Cl solution and extracted with Et2O (3 × 20 mL). The combined organic extracts were washed with water and brine, dried over anhydrous Na2SO4 and concentrated under vacuum. The crude material was purified by column chromatography on silica gel (10% EtOAc in pet ether (PE)) to give pure alcohol 4 (0.88 g, 3.43 mmol 75%) as a yellow oily liquid. TLC: Rf 0.76 (10% EtOAc in PE). IR: 1096, 1428, 1633, 2115, 2946, 3453 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.71 (p, J = 7.0 Hz, 2 H), 1.99 (t, J = 2.6 Hz, 1 H), 2.28–2.33 (m, 4 H), 2.42–2.46 (m, 2 H), 3.52 (dd, J 1,2 = 3.92 Hz, J 1,3 = 9.52 Hz, 1 H), 3.61 (dd, J 1,2 = 6.68 Hz, J 1,3 = 9.52 Hz, 1 H), 3.92–3.98 (m, 1 H), 4.59 (s, 2 H), 7.30–7.40 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 17.5, 17.8, 23.9, 27.7, 68.8, 69.2, 72.9, 73.4, 76.4, 81.4, 83.5, 127.8, 128.3, 137.9. HRMS: m/z [M + Na]+ calcd for C17H20O2Na: 279.1361; found: 279.1361.
  • 14 Synthesis of (5S,14S,15R)-5-((Benzyloxy)methyl)-15,17,18,18-pentamethyl-2,4,16-trioxa-17-silanonadeca-7,12-diyn-14-ol (6): (R)-(+)-Methyl lactate (1.0 g, 9.60 mmol, 1 equiv), was dissolved in anhydrous DMF (5 mL), and imidazole (1.06 g, 15.57 mmol, 1.6 equiv) was added. The solution was cooled in an ice bath and TBSCl (1.45 g, 9.60 mmol, 1 equiv) was added slowly in portions. After the completion of addition, the ice bath was allowed to melt gradually overnight. After 18 h, the reaction mixture was diluted with water (3 mL) and hexanes (10 mL). The aqueous phase was separated and extracted with hexanes (60 mL), and the combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated by rotary evaporation to afford the TBS ether (1.6 g, 7.33 mmol, 76%) as a colorless liquid, which was used without purification. The above prepared TBS protected (R)-(+)-methyl lactate (1.00 g, 4.58 mmol, 1 equiv), in hexanes (20 mL), was cooled to –78 °C, DIBAL-H (4.7 mL, 1.0 M in hexanes, 4.7 mmol, 1.0 equiv) was added dropwise and the mixture was stirred for 45 minutes at –78 °C. The reaction mixture was then quenched by addition of MeOH (1.0 mL) and stirred for 15 min at –78 °C. The cold solution was transferred to a round-bottom flask containing saturated aqueous Rochelle salt (10 mL) and the resulting mixture was vigorously stirred for 30 min. The aqueous phase was separated and extracted with hexanes, and the combined organic extracts were washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated to afford the aldehyde (0.70 g, 3.66 mmol, 80%) as a colorless liquid. To a solution of compound 5 (0.90 g, 3.0 mmol, 1 equiv) in anhydrous THF (15 mL), n-BuLi (.3.0 mL, 3.0 mmol, 1 M in THF, 1 equiv) was added dropwise at –78 °C. The solution was stirred for 30 min at the same temperature and then freshly prepared aldehyde was added to the reaction mixture dropwise (0.70 g, 3.66 mmol, 1.2 equiv over 30 mins) and the mixture was stirred for 2.5 h. The reaction mixture was quenched with saturated aqueous NH4Cl and the organic phase was separated and evaporated under reduced pressure. The aqueous layer was extracted with EtOAc and the organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated by rotary evaporation. Column chromatographic purification (10% EtOAc in PE) of the resultant crude residue provided pure alcohol 6 (1.20 g, 2.45 mmol, 80%) as a pale-yellow liquid. TLC: Rf 0.67 (5% EtOAc in PE). IR: 1252, 1494, 1628, 2245, 2985, 3470 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.11 (s, 3 H), 0.12 (s, 3 H), 0.92 (s, 9 H), 1.24 (d, J = 6.24 Hz, 3 H), 1.59 (brs, 1 H), 1.68 (p, J = 6.43 Hz, 2 H), 2.24–2.37 (m, 4 H), 2.48–2.53 (m, 2 H), 3.41 (s, 3 H), 3.62–3.64 (m, 2 H), 3.86–3.94 (m, 2 H), 4.28 (m, 1 H), 4.59 (s, 2 H), 4.77 (s, 2 H), 7.30–7.37 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = –4.7, –4.4, 17.9, 22.2, 25.8, 27.9, 55.5, 67.1, 71.2, 71.6, 73.4, 74.8, 78.6, 80.9, 85.8, 95.9, 127.6, 127.6, 128.4S, 138.2. HRMS: m/z [M + Na]+ calcd for C28H44O5SiNa: 511.7212; found: 511.7211.