Synlett 2020; 31(18): 1747-1752
DOI: 10.1055/s-0040-1707271
synpacts

Redox-Neutral Propargylic C–H Functionalization by Using Iron Catalysis

Austin C. Durham
,
Yidong Wang
,
Yi-Ming Wang
We thank the University of Pittsburgh for generous startup support.


Abstract

In spite of their rich stoichiometric chemistry, cyclopentadienyliron(II) dicarbonyl complexes are rarely used as catalysts in organic synthesis. Inspired by precedents in the chemistry of cationic olefin complexes and neutral allylmetal species, our group has developed a coupling of alkynes or alkenes with aldehydes and other carbonyl electrophiles to give homopropargylic and homoallylic alcohols, respectively, by using a substituted cyclopentadienyliron(II) dicarbonyl complex as the catalyst. In this article, we first contextualize this development within the conceptual background of C–H functionalization chemistry and relative to key stoichiometric precedents. We then give an account of our group’s discovery and development of the catalytic α-functionalization of alkenes and alkynes with electrophilic reagents.

Introduction

Preliminary Stoichiometric Work

Hydroxyalkylation Development and Scope

Conclusions and Future Directions

Supporting Information



Publikationsverlauf

Eingereicht: 23. Juni 2020

Angenommen nach Revision: 20. Juli 2020

Artikel online veröffentlicht:
08. September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sinha SK, Zanoni G, Maiti D. Asian J. Chem. 2018; 7: 1178
  • 2 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
  • 3 Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 4 Chen K, Lei X. Curr. Opin. Green Sustainable Chem. 2018; 11: 9
  • 5 Cernak T, Dykstra K, Tyagarajan S, Vachal P, Krska S. Chem. Soc. Rev. 2015; 45: 546
  • 6 Nakamura A, Nakada M. Synthesis 2013; 45: 1421
  • 7 Umbreit MA, Sharpless KB. J. Am. Chem. Soc. 1977; 99: 5526
  • 8 Bao H, Tambar UK. J. Am. Chem. Soc. 2012; 134: 18495
  • 9 Qin L, Sharique M, Tambar UK. J. Am. Chem. Soc. 2019; 141: 17305
  • 10 Bayeh L, Le PQ, Tambar UK. Nature 2017; 547: 196
  • 11 Kharasch MS, Sosnovsky G. J. Am. Chem. Soc. 1958; 80: 756
  • 12 Zhang B, Zhu S.-F, Zhou Q.-L. Tetrahedron Lett. 2013; 54: 2665
  • 13 Samadi S, Jadidi K, Samadi M, Ashouri A, Notash B. Tetrahedron 2019; 75: 862
  • 14 Trost BM, Strege PE, Weber L, Fullerton TJ, Dietsche TJ. J. Am. Chem. Soc. 1978; 100: 3407
  • 15 Young AJ, White MC. J. Am. Chem. Soc. 2008; 130: 14090
  • 16 Chen MS, White MC. J. Am. Chem. Soc. 2004; 126: 1346
  • 17 Larsson JM, Zhao TS. N, Szabó KJ. Org. Lett. 2011; 13: 1888
  • 18 Mao L, Bertermann R, Rachor SG, Szabó KJ, Marder TB. Org. Lett. 2017; 19: 6590
  • 19 Fernandes RA, Nallasivam JL. Org. Biomol. Chem. 2019; 17: 8647
  • 20 Sekine M, Ilies L, Nakamura E. Org. Lett. 2013; 15: 714
  • 21 Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
  • 22 Wang P.-S, Lin H.-C, Zhou X.-L, Gong L.-Z. Org. Lett. 2014; 16: 3332
  • 23 Zhang B, Hollerbach MR, Blakey SB, Davies HM. L. Org. Lett. 2019; 21: 9864
  • 24 Kazerouni AM, Nelson TA. F, Chen SW, Sharp KR, Blakey SB. J. Org. Chem. 2019; 84: 13179
  • 25 Kuijpers PF, van der Vlugt JI, Schneider S, de Bruin B. Chem. Eur. J. 2017; 23: 13819
  • 26 Goswami M, Rebreyend C, de Bruin B. Molecules 2016; 21: 242
  • 27 Bao W, Kossen H, Schneider U. J. Am. Chem. Soc. 2017; 139: 4362
  • 28 Wei X.-F, Xie X.-W, Shimizu Y, Kanai M. J. Am. Chem. Soc. 2017; 139: 4647
  • 29 Mita T, Uchiyama M, Michigami K, Sato Y. Beilstein J. Org. Chem. 2018; 14: 2012
  • 30 Jiang T, Quan X, Zhu C, Andersson PG, Bäckvall J.-E. Angew. Chem. Int. Ed. Engl. 2016; 55: 5824
  • 31 Clark JS, Tolhurst KF, Taylor M, Swallow S. Tetrahedron Lett. 1998; 39: 4913
  • 32 Grigg RD, Rigoli JW, Pearce SD, Schomaker JM. Org. Lett. 2012; 14: 280
  • 33 Lu H, Li C, Jiang H, Lizardi CL, Zhang XP. Angew. Chem. Int. Ed. Engl. 2014; 53: 7028
  • 34 Lamb KN, Squitieri RA, Chintala SR, Kwong AJ, Balmond EI, Soldi C, Dmitrenko O, Castiñeira Reis M, Chung R, Addison JB, Fettinger JC, Hein JE, Tantillo DJ, Fox JM, Shaw JT. Chem. Eur. J. 2017; 23: 11843
  • 35 McLaughlin EC, Doyle MP. J. Org. Chem. 2008; 73: 4317
  • 36 Haydl AM, Breit B, Liang T, Krische MJ. Angew. Chem. Int. Ed. Engl. 2017; 56: 11312
  • 37 Caldarelli JL, White PS, Templeton JL. J. Am. Chem. Soc. 1992; 114: 10097
  • 38 Watson PL, Bergman RG. J. Am. Chem. Soc. 1980; 102: 2698
  • 39 Rosenblum M. Acc. Chem. Res. 1974; 7: 122
  • 40 Akita M, Kakuta S, Sugimoto S, Terada M, Tanaka M, Moro-oka Y. Organometallics 2001; 20: 2736
  • 41 Marshall JA, Wang XJ. J. Org. Chem. 1992; 57: 1242
  • 42 Dulich F, Müller K.-H, Ofial AR, Mayr H. Helv. Chim. Acta 2005; 88: 1754
  • 43 Jiang S, Agoston GE, Chen T, Cabal M.-P, Turos E. Organometallics 1995; 14: 4697
  • 44 Wang Z, Wang Y, Zhang L. J. Am. Chem. Soc. 2014; 136: 8887
  • 45 Li T, Zhang L. J. Am. Chem. Soc. 2018; 140: 17439
  • 46 Wang Y, Zhu J, Durham AC, Lindberg H, Wang Y.-M. J. Am. Chem. Soc. 2019; 141: 19594