Synthesis 2021; 53(02): 238-254
DOI: 10.1055/s-0040-1707268
short review

Recent Advances in Palladium-Catalyzed Bridging C–H Activation by Using Alkenes, Alkynes or Diazo Compounds as Bridging Reagents

Fulin Zhang
a  Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. of China   Email: [email protected]
,
Luoting Xin
b  Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, ­Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. of China   Email: [email protected]
,
Yinghua Yu
b  Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, ­Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. of China   Email: [email protected]
,
Saihu Liao
a  Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. of China   Email: [email protected]
,
b  Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, ­Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. of China   Email: [email protected]
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 21402197, 21871259, and 21901244), the Hundred Talents Program, and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000).


Dedicated to the 60th anniversary of the Fujian Institute of Research on the Structure of Matter

Abstract

Transition-metal-catalyzed direct inert C–H bond functionalization has attracted much attention over the past decades. However, because of the high strain energy of the suspected palladacycle generated via C–H bond palladation, direct functionalization of a C–H bond less than a three-bond distance from a catalyst center is highly challenging. In this short review, we summarize the advances on palladium-catalyzed bridging C–H activation, in which an inert proximal C–H bond palladation is promoted by the elementary step of migratory insertion of an alkene, an alkyne or a metal carbene intermediate.

1 Introduction

2 Palladium-Catalyzed Alkene Bridging C–H Activation

2.1 Intramolecular Reactions

2.2 Intermolecular Reactions

3 Palladium-Catalyzed Alkyne Bridging C–H Activation

3.1 Intermolecular Reactions

3.2 Intramolecular Reactions

4 Palladium-Catalyzed Carbene Bridging C–H Activation

5 Conclusion and Outlook



Publication History

Received: 05 June 2020

Accepted after revision: 04 August 2020

Publication Date:
22 September 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 1b Godula K, Sames D. Science 2006; 312: 67
    • 1c Diaz-Requejo MM, Perez PJ. Chem. Rev. 2008; 108: 3379
    • 1d Giri R, Shi BF, Engle KM, Maugel N, Yu JQ. Chem. Soc. Rev. 2009; 38: 3242
    • 1e Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 1f Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1g Wencel-Delord J, Droge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1h Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 1i Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1j Zhu RY, Farmer ME, Chen YQ, Yu JQ. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 1k Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
    • 1l Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 1m Newton CG, Wang SG, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
    • 2a Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 2b Dupont J, Consorti CS, Spencer J. Chem. Rev. 2005; 105: 2527
    • 2c Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 2d Engle KM, Mei TS, Wasa M, Yu JQ. Acc. Chem. Res. 2012; 45: 788
    • 2e Topczewski JJ, Sanford MS. Chem. Sci. 2015; 6: 70
    • 2f Baudoin O. Acc. Chem. Res. 2017; 50: 1114
    • 2g He J, Wasa M, Chan KS. L, Shao Q, Yu JQ. Chem. Rev. 2017; 117: 8754
    • 3a McNally A, Haffemayer B, Collins BS, Gaunt MJ. Nature 2014; 510: 129
    • 3b He C, Gaunt MJ. Angew. Chem. Int. Ed. 2015; 54: 15840
    • 3c Smalley AP, Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 10632
    • 3d Willcox D, Chappell BG, Hogg KF, Calleja J, Smalley AP, Gaunt MJ. Science 2016; 354: 851
    • 3e He C, Gaunt MJ. Chem. Sci. 2017; 8: 3586
    • 3f Hogg KF, Trowbridge A, Alvarez-Pérez A, Gaunt MJ. Chem. Sci. 2017; 8: 8198
    • 3g Smalley AP, Cuthbertson JD, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 1412
    • 3h Wen J, Wang D, Qian J, Wang D, Zhu C, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 2078
    • 3i Su B, Bunescu A, Qiu Y, Zuend SJ, Ernst M, Hartwig JF. J. Am. Chem. Soc. 2020; 142: 7912
    • 4a Jiao L, Bach T. J. Am. Chem. Soc. 2011; 133: 12990
    • 4b Jiao L, Herdtweck E, Bach T. J. Am. Chem. Soc. 2012; 134: 14563
    • 4c Jiao L, Bach T. Angew. Chem. Int. Ed. 2013; 52: 6080
    • 4d Sui X, Zhu R, Li G, Ma X, Gu Z. J. Am. Chem. Soc. 2013; 135: 9318
    • 4e Zhao K, Xu S, Pan C, Sui X, Gu Z. Org. Lett. 2016; 18: 3782
    • 4f Li R, Zhou Y, Xu X, Dong G. J. Am. Chem. Soc. 2019; 141: 18958
    • 5a Wang J, Dong Z, Yang C, Dong G. Nat. Chem. 2019; 11: 1106
    • 5b Wu Z, Fatuzzo N, Dong G. J. Am. Chem. Soc. 2020; 142: 2715
    • 6a Catellani M, Motti E, Della Ca’ N. Acc. Chem. Res. 2008; 41: 1512
    • 6b Chen X, Engle KM, Wang DH, Yu JQ. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 6c Gu Z, Sui X, Zhu R. Synlett 2013; 24: 2023
    • 6d Ye J, Lautens M. Nat. Chem. 2015; 7: 863
    • 6e Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
    • 6f Kim DS, Park WJ, Jun CH. Chem. Rev. 2017; 117: 8977
    • 6g Gandeepan P, Ackermann L. Chem 2018; 4: 199
    • 6h Cheng HG, Chen S, Chen R, Zhou Q. Angew. Chem. Int. Ed. 2019; 58: 5832
    • 6i Wang J, Dong G. Chem. Rev. 2019; 119: 7478
    • 7a Vlaar T, Ruijter E, Orru RV. A. Adv. Synth. Catal. 2011; 353: 809
    • 7b Mehta VP, García-López J.-A. ChemCatChem 2017; 9: 1149
    • 7c Ping Y, Li Y, Zhu J, Kong W. Angew. Chem. Int. Ed. 2019; 58: 1562
  • 8 Huang Q, Fazio A, Dai G, Campo MA, Larock RC. J. Am. Chem. Soc. 2004; 126: 7460
    • 9a Ma S, Gu Z. Angew. Chem. Int. Ed. 2005; 44: 7512
    • 9b Shi F, Larock RC. Top. Curr. Chem. 2010; 292: 123
    • 9c Rahim A, Feng J, Gu Z. Chin. J. Chem. 2019; 37: 929
    • 10a Piou T, Bunescu A, Wang Q, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 12385
    • 10b Bunescu A, Piou T, Wang Q, Zhu J. Org. Lett. 2015; 17: 334
  • 11 Wang M, Zhang X, Zhuang YX, Xu YH, Loh TP. J. Am. Chem. Soc. 2015; 137: 1341
  • 12 Lu Z, Hu C, Guo J, Li J, Cui Y, Jia Y. Org. Lett. 2010; 12: 480
  • 13 Sickert M, Weinstabl H, Peters B, Hou X, Lautens M. Angew. Chem. Int. Ed. 2014; 53: 5147
  • 14 He H.-Y, Wang W, Yu X.-J, Huang J, Jian L, Fu H.-Y, Zheng X.-L, Chen H, Li R.-X. Eur. J. Org. Chem. 2016; 5616
  • 15 Luo X, Xu Y, Xiao G, Liu W, Qian C, Deng G, Song J, Liang Y, Yang C. Org. Lett. 2018; 20: 2997
    • 16a Wollenburg M, Bajohr J, Marchese AD, Whyte A, Glorius F, Lautens M. Org. Lett. 2020; 22: 3679
    • 16b Lu H, Yang X, Zhou L, Li W, Deng G, Yang Y, Liang Y. Org. Chem. Front. 2020; 7: 2016
  • 17 Yao T, He D. Org. Lett. 2017; 19: 842
  • 18 Yoon H, Lossouarn A, Landau F, Lautens M. Org. Lett. 2016; 18: 6324
  • 19 Luo X, Zhou L, Lu H, Deng G, Liang Y, Yang C, Yang Y. Org. Lett. 2019; 21: 9960
  • 20 Rodriguez JF, Marchese AD, Lautens M. Org. Lett. 2018; 20: 4367
  • 21 Yoon H, Rolz M, Landau F, Lautens M. Angew. Chem. Int. Ed. 2017; 56: 10920
  • 22 Zheng H, Zhu Y, Shi Y. Angew. Chem. Int. Ed. 2014; 53: 11280
    • 23a Mauleón P, Alonso I, Carretero JC. Angew. Chem. Int. Ed. 2001; 40 , 1291
    • 23b Mauleon P, Nunez AA, Alonso I, Carretero JC. Chem. Eur. J. 2003; 9: 1511
    • 23c Alonso I, Alcami M, Mauleon P, Carretero JC. Chem. Eur. J. 2006; 12: 4576
    • 24a Hu Y, Song F, Wu F, Cheng D, Wang S. Chem. Eur. J. 2008; 14: 3110
    • 24b Hu Y, Yu C, Ren D, Hu Q, Zhang L, Cheng D. Angew. Chem. Int. Ed. 2009; 48: 5448
    • 24c Hu Y, Ouyang Y, Qu Y, Hu Q, Yao H. Chem. Commun. 2009; 4575
    • 24d Hu Y, Qu Y, Wu F, Gui J, Wei Y, Hu Q, Wang S. Chem. Asian J. 2010; 5: 309
    • 24e Hu Y, Ren D, Zhang L, Lin X, Wan J. Eur. J. Org. Chem. 2010; 4454
  • 25 Ohno H, Miyamura K, Mizutani T, Kadoh Y, Takeoka Y, Hamaguchi H, Tanaka T. Chem. Eur. J. 2005; 11: 3728
  • 26 Tao W, Silverberg LJ, Rheingold AL, Heck RF. Organometallics 1989; 8: 2550
  • 27 Larock RC, Doty MJ, Cacchi S. J. Org. Chem. 1993; 58: 4579
  • 28 Ramesh K, Satyanarayana G. Eur. J. Org. Chem. 2018; 2018: 4135
    • 29a Zhang X, Larock RC. Org. Lett. 2005; 7: 3973
    • 29b Waldo JP, Zhang X, Shi F, Larock RC. J. Org. Chem. 2008; 73: 6679
  • 30 Sakakibara T, Tanaka Y, Yamasaki S.-i. Chem. Lett. 1986; 15: 797
  • 31 Kawasaki S, Satoh T, Miura M, Nomura M. J. Org. Chem. 2003; 68: 6836
    • 32a Dyker G. J. Org. Chem. 1993; 58: 234
    • 32b Dyker G, Kellner A. Tetrahedron Lett. 1994; 35: 7633
    • 33a Tian Q, Larock RC. Org. Lett. 2000; 2: 3329
    • 33b Larock RC, Tian Q. J. Org. Chem. 2001; 66: 7372
  • 34 Zhou B, Lu A, Shao C, Liang X, Zhang Y. Chem. Commun. 2018; 54: 10598
  • 35 Zhou B, Wu Z, Ma D, Ji X, Zhang Y. Org. Lett. 2018; 20: 6440
  • 36 Jafarpour F, Ghasemi M, Mohaghegh F, Asgari S, Habibi A. Org. Lett. 2019; 21: 10143
  • 37 Zhou B, Wu Z, Qi WX, Sun XL, Zhang YH. Adv. Synth. Catal. 2018; 360: 4480
  • 38 Yang Y, Zhou L, Yang X, Luo X, Deng G, Yang Y, Liang Y. Synthesis 2020; 52: 1223
  • 39 Yamamoto Y, Jiang J, Yasui T. Chem. Eur. J. 2020; 26: 3749
    • 40a Liu Z, Zhang X, Larock RC. J. Am. Chem. Soc. 2005; 127: 15716
    • 40b Liu Z, Larock RC. J. Org. Chem. 2007; 72: 223
    • 40c Liu Z, Larock RC. Angew. Chem. Int. Ed. 2007; 46: 2535
  • 41 Jayanth TT, Cheng CH. Chem. Commun. 2006; 894
  • 42 Zhao J, Campo M, Larock RC. Angew. Chem. Int. Ed. 2005; 44: 1873
    • 43a Zhao J, Larock RC. Org. Lett. 2005; 7: 701
    • 43b Zhao J, Larock RC. J. Org. Chem. 2006; 71: 5340
  • 44 Ge Y, Zhang J, Qiu Z, Xie Z. Angew. Chem. Int. Ed. 2020; 59: 4851
  • 45 Guo S, Li P, Guan Z, Cai L, Chen S, Lin A, Yao H. Org. Lett. 2019; 21: 921
    • 46a Hu Y, Yao H, Sun Y, Wan J, Lin X, Zhu T. Chem. Eur. J. 2010; 16: 7635
    • 46b Hu Y, Zhu T, Mu X, Zhao Q, Yu T, Wen L, Zhang Y, Wu M, Zhang H. Tetrahedron 2012; 68: 311
  • 47 Bour C, Suffert J. Org. Lett. 2005; 7: 653
  • 48 Mota AJ, Dedieu A, Bour C, Suffert J. J. Am. Chem. Soc. 2005; 127: 7171
  • 49 Leibeling M, Milde B, Kratzert D, Stalke D, Werz DB. Chem. Eur. J. 2011; 17: 9888
  • 50 Leibeling M, Pawliczek M, Kratzert D, Stalke D, Werz DB. Org. Lett. 2012; 14: 346
    • 51a Zuo Z, Wang J, Liu J, Wang Y, Luan X. Angew. Chem. Int. Ed. 2020; 59: 653
    • 51b Fan L, Hao J, Yu J, Ma X, Liu J, Luan X. J. Am. Chem. Soc. 2020; 142: 6698
  • 52 Cheng C, Zuo X, Tu D, Wan B, Zhang Y. Org. Lett. 2020; 22: 4985
  • 53 Tsuda T, Kawakami Y, Choi SM, Shintani R. Angew. Chem. Int. Ed. 2020; 59: 8057
    • 54a Doyle MP. Chem. Rev. 1986; 86: 919
    • 54b Ye T, McKervey MA. Chem. Rev. 1994; 94: 1091
    • 54c Padwa A, Weingarten MD. Chem. Rev. 1996; 96: 223
    • 54d Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
    • 54e Zhang ZH, Wang JB. Tetrahedron 2008; 64: 6577
    • 54f Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 54g Liu L, Zhang J. Chem. Soc. Rev. 2016; 45: 506
    • 54h Cheng QQ, Deng Y, Lankelma M, Doyle MP. Chem. Soc. Rev. 2017; 46: 5425
    • 54i Zhu D, Chen L, Fan H, Yao Q, Zhu S. Chem. Soc. Rev. 2020; 49: 908
    • 55a Hu F, Xia Y, Ma C, Zhang Y, Wang J. Chem. Commun. 2015; 51: 7986
    • 55b Xiang YY, Wang C, Ding QP, Peng YY. Adv. Synth. Catal. 2019; 361: 919
    • 56a Zhang Y, Wang JB. Eur. J. Org. Chem. 2011; 1015
    • 56b Zhang Z, Zhang Y, Wang J. ACS Catal. 2011; 1: 1621
    • 56c Barluenga J, Valdes C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 56d Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
    • 56e Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
    • 56f Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
    • 56g Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 56h Xia Y, Wang J. J. Am. Chem. Soc. 2020; 142: 10592
  • 57 Xu S, Chen R, Fu Z, Zhou Q, Zhang Y, Wang J. ACS Catal. 2017; 7: 1993
  • 58 Yu Y, Lu Q, Chen G, Li C, Huang X. Angew. Chem. Int. Ed. 2018; 57: 319
  • 59 Yan C, Yu YH, Peng B, Huang XL. Eur. J. Org. Chem. 2020; 723
  • 60 Yu Y, Chakraborty P, Song J, Zhu L, Li C, Huang X. Nat. Commun. 2020; 11: 461
  • 61 Yu Y, Ma L, Xia J, Xin L, Zhu L, Huang X. Angew. Chem. Int. Ed. 2020; 59 in press; DOI: 10.1002/anie.202007799.
  • 62 Zhu L, Ren X, Yu Y, Ou P, Wang ZX, Huang X. Org. Lett. 2020; 22: 2087
  • 63 Ren X, Zhu L, Yu Y, Wang ZX, Huang X. Org. Lett. 2020; 22: 3251