Synthesis 2020; 52(22): 3439-3445
DOI: 10.1055/s-0040-1707233
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Hydration and Tandem Transfer Hydrogenation of Alkynes for the Synthesis of Alcohol in Water

Nianhua Luo
a  School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. of China   Email: oyl0327@163.com   Email: luorenshi2010@163.com
,
Yuhong Zhong
a  School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. of China   Email: oyl0327@163.com   Email: luorenshi2010@163.com
,
Ji-Tian Liu
b  Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. of China
,
Lu Ouyang
a  School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. of China   Email: oyl0327@163.com   Email: luorenshi2010@163.com
,
Renshi Luo
a  School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. of China   Email: oyl0327@163.com   Email: luorenshi2010@163.com
› Author Affiliations
The authors thank the National Natural Science Foundation of China (21962004, 21562004), Jiangxi Provincial Department of Science and Technology (20192BAB203004), the Jiangxi Education Hall Science and Technology Foundation (GJJ180801), the emergency research project for Gannan Medical University (YJ202027) and the Fundamental Research Funds for Gannan Medical University (QD201810, QD201816) for financial support.
Further Information

Publication History

Received: 21 May 2020

Accepted after revision: 09 July 2020

Publication Date:
11 August 2020 (online)


Abstract

A practical and efficient method for the synthesis of alcohols in one pot from readily available alkynes via a tandem process by formic acid promoted hydration and metal-ligand bifunctional iridium-catalyzed­ transfer hydrogenation under mild conditions has been described. This transformation is simple, efficient, and can be performed with a variety of alkynes in good yields and with excellent stereoselectivities. Experimental results showed high catalytic activity, and turnover frequency (TOF) up to 25000. Importantly, this transformation can be conducted in water, and is thus green and environmentally friendly.

Supporting Information

 
  • References

    • 1a Alami M, Hamze A, Provot O. ACS Catal. 2019; 9: 3437
    • 1b Patel M, Saunthwal RK, Verma AK. Acc. Chem. Res. 2017; 50: 240
    • 1c Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
    • 1d Yan Y, Pan X, Yu X, Wu J. Chem. Soc. Rev. 2014; 43: 834
    • 1e Chinchilla R, Najera C. Chem. Rev. 2014; 114: 1783
    • 1f Lauder K, Toscani A, Scalacci N, Castagnolo D. Chem. Rev. 2017; 117: 14091
    • 1g Yoshida H. ACS Catal. 2016; 6: 1799
    • 2a Zhang Z, Wu L, Liao J, Wu W, Jiang H, Li J, Li J. J. Org. Chem. 2015; 80: 7594
    • 2b Li J, Li Y, Wang Z, Bian Y, Bai S, Liu L, Sun J. J. Org. Chem. 2018; 83: 4257
    • 2c Li L, Herzon SB. J. Am. Chem. Soc. 2012; 134: 17376
    • 2d Liang S, Jasinski J, Hammond GB, Xu B. Org. Lett. 2015; 17: 162
    • 2e Gatto M, Belanzoni P, Belpassi L, Biasiolo L, Del Zotto A, Torantelli F, Zuccaccia D. ACS Catal. 2016; 6: 7363
    • 3a Catalytic Cascade Reactions . Xu P.-F, Wang W. Wiley; Hoboken: 2013: 123
    • 3b Hayashi Y. Chem. Sci. 2016; 7: 866
    • 3c Ramachary DB, Jain S. Org. Biomol. Chem. 2011; 9: 1277
    • 3d Climent MJ, Corma A, Iborra S. Chem. Rev. 2011; 111: 1072
    • 3e Denard CA, Hartwig JF, Zhao H. ACS Catal. 2013; 3: 2856
    • 4a Zeng M, Li L, Seth BH. J. Am. Chem. Soc. 2014; 136: 7058
    • 4b Wu S, Liu J, Li Z. ACS Catal. 2017; 7: 5225
    • 4c Ying J, Pu L. J. Org. Chem. 2016; 81: 8135
  • 5 Li J, Wang C, Xue D, Wei Y, Xiao J. Green Chem. 2013; 15: 2685
    • 6a Schaaf P, Gojic V, Bayer T, Rudroff F, Schnerch M, Mihovilovic MD. ChemCatChem 2018; 10: 920
    • 6b Liu S, Liu H, Zhou H, Liu Q, Lv J. Org. Lett. 2018; 20: 1110
    • 6c Liu H, Liu S, Zhou H, Liu Q, Wang C. RSC Adv. 2018; 8: 14829
  • 7 Wang S, Miao C, Wang W, Lei Z, Sun W. ChemCatChem 2014; 6: 1612
  • 8 Li F, Wang N, Lu L, Zhu G. J. Org. Chem. 2015; 80: 3538
  • 9 Lu J, Dimroth J, Weck M. J. Am. Chem. Soc. 2015; 137: 12984
    • 10a Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 10b Michon C, MacIntyre K, Corre Y, Agbossou-Niedercorn F. ChemCatChem 2016; 8: 1755
    • 10c Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
    • 10d Chen Y, Pan Y, He Y.-M, Fan Q.-H. Angew. Chem. Int. Ed. 2019; 58: 16831
    • 10e Yang Z, Luo R, Zhu Z, Yang X, Tang W. Organometallics 2017; 36: 4095
  • 11 Luo N, Liao J, Ouyang L, Wen H, Liu J, Tang W, Luo R. Organometallics 2019; 38: 3025
  • 12 Luo N, Liao J, Ouyang L, Wen H, Zhong Y, Liu J, Tang W, Luo R. Organometallics 2020; 39: 165
  • 13 Yang Z, Zhu Z, Luo R, Qiu X, Liu J. Green Chem. 2017; 19: 3296
    • 14a Tachinami T, Nishimura T, Ushimaru R, Noyori R, Naka H. J. Am. Chem. Soc. 2013; 135: 50
    • 14b See JY, Zhao Y. Org. Lett. 2018; 20: 7433
    • 14c Liu W, Wang HLi C.-J. Org. Lett. 2016; 18: 2184
    • 15a Yang Z, Zhu Z, Luo R, Qiu X, Liu J. Green Chem. 2017; 19: 3296
    • 15b Li J, Tang W, Ren D, Xu J, Yang Z. Green Chem. 2019; 21: 2088
    • 15c Liu J, Yang S, Tang W, Yang Z, Xu J. Green Chem. 2018; 20: 2118
    • 15d Talwar D, Wu X, Saidi O, Salguero NP, Xiao J. Chem. Eur. J. 2014; 20: 12835
  • 16 Wei Y, Xue D, Lei Q, Wang C, Xiao J. Green Chem. 2013; 15: 629
    • 17a Kraakman PA, Nibbering ET. J, De Wolf WH, Bickelhaupt F. Tetrahedron 1987; 43: 5109
    • 17b Ng JK.-P, Li Y, Tan G.-K, Koh L.-L, Vittal JJ, Leung P.-H. Inorg. Chem. 2005; 44: 9874
    • 17c Bogár K, Krumlinde P, Bacsik Z, Hedin N, Bäckvall J.-E. Eur. J. Org. Chem. 2011; 4409
    • 17d Scott DJ, Fuchter MJ, Ashley AE. J. Am. Chem. Soc. 2014; 136: 15813
    • 17e Polidano K, Reed-Berendt BG, Basset A, Watson JA, Williams JM. J, Morrill LC. Org. Lett. 2017; 19: 6716
    • 17f Swamy PC. A, Varenikov A, Ruiter G. Chem. Eur. J. 2020; 26: 2333