Synthesis 2020; 52(22): 3466-3472
DOI: 10.1055/s-0040-1707229
paper
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Multicomponent Coupling Reaction of Alkyl Halides, Isocyanides and H2O: An Expedient Way to Access Alkyl Amides

Qiao Li
,
Hongwei Jin
,
Yunkui Liu
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: ykuiliu@zjut.edu.cn   eMail: zhoubw@zjut.edu.cn
,
Bingwei Zhou
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: ykuiliu@zjut.edu.cn   eMail: zhoubw@zjut.edu.cn
› Institutsangaben
We are grateful to the Natural Science Foundation of Zhejiang Province (LQ20B020012), the research foundation of Zhejiang University of Technology (2019101000429), and the National Natural Science Foundation of China (No. 21772176 and 21372201) for financial support.
Weitere Informationen

Publikationsverlauf

Received: 23. Juni 2020

Accepted after revision: 03. Juli 2020

Publikationsdatum:
05. August 2020 (online)


Abstract

We herein describe a Ni-catalyzed multicomponent coupling reaction of alkyl halides, isocyanides, and H2O to access alkyl amides. Bench-stable NiCl2(dppp) is competent to initiate this transformation under mild reaction conditions, thus allowing easy operation and adding practical value. Substrate scope studies revealed a broad functional group tolerance and generality of primary and secondary alkyl halides in this protocol. A plausible catalytic cycle via a SET process is proposed based on preliminary experiments and previous literature.

Supporting Information

 
  • References

    • 1a The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Material Science. Greenberg A, Breneman CM, Liebman JF. Wiley; New York: 2000
    • 1b Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 1c Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
    • 2a Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 2b Pattabiraman VR, Bode JW. Nature 2011; 480: 471
    • 2c Lanigana RM, Sheppar TD. Eur. J. Org. Chem. 2013; 7453
    • 2d Bode JW. Top. Organomet. Chem. 2013; 44: 13
    • 2e Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
    • 2f de Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029
    • 3a Kondo T, Sone Y, Tsuji Y, Watanabe Y. J. Organomet. Chem. 1994; 473: 163
    • 3b Itsenko O, Kihlberg T, Långström B. J. Org. Chem. 2004; 69: 4356
    • 3c Fukuyama T, Nishitani S, Inouye T, Morimoto K, Ryu I. Org. Lett. 2006; 8: 1383
    • 3d Fukuyama T, Inouye T, Ryu I. J. Organomet. Chem. 2007; 692: 685
    • 3e Sumino S, Fusano A, Fukuyama T, Ryu I. Acc. Chem. Res. 2014; 47: 1563
    • 3f Li Y, Zhu F, Wang Z, Rabeah J, Brückner A, Wu X.-F. ChemCatChem 2017; 9: 915
    • 3g Sargent BT, Alexanian EJ. Angew. Chem. Int. Ed. 2019; 58: 9533
    • 3h Zhao S, Mankad NP. Org. Lett. 2019; 21: 10106
  • 4 Serrano E, Martin R. Angew. Chem. Int. Ed. 2016; 55: 11207
  • 5 Zheng S, Primer DN, Molander GA. ACS Catal. 2017; 7: 7957
  • 6 Michiyuki T, Osaka I, Komeyama K. Chem. Commun. 2020; 56: 1247
    • 7a Lang S. Chem. Soc. Rev. 2013; 42: 4867
    • 7b Vlaar T, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
    • 7c Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257
    • 7d Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY. Chem. Rev. 2015; 115: 2698
    • 7e Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
    • 7f Wang H, Xu B. Chin. J. Org. Chem. 2015; 35: 588
    • 7g Song B, Xu B. Chem. Soc. Rev. 2017; 46: 1103
    • 7h Gu Z, Ji S. Acta Chim. Sinica 2018; 76: 347
    • 7i Collet JW, Roose TR, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2020; 59: 540
    • 8a Qiu G, Mamboury M, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 15377
    • 8b Mamboury M, Wang Q, Zhu J. Chem. Eur. J. 2017; 23: 12744
  • 9 Yang Q, Li C, Cheng M.-X, Yang S.-D. ACS Catal. 2016; 6: 4715
  • 10 Rohe S, McCallum T, Morris AO, Barriault L. J. Org. Chem. 2018; 83: 10015
    • 11a Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 11b Iwasaki T, Kambe N. Top. Curr. Chem. 2016; 374: 66
    • 11c Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
    • 11d Börjesson M, Moragas T, Gallego D, Martin R. ACS Catal. 2016; 6: 6739
    • 11e Choi J, Fu GC. Science 2017; 356: 7230
    • 11f Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
    • 11g Shi R, Zhang Z, Hu X. Acc. Chem. Res. 2019; 52: 1471
  • 12 Zhou W.-J, Zhang Y, Cao G, Liu H, Yu D.-G. Chin. J. Org. Chem. 2017; 37: 1322
    • 13a Hao W, Tian J, Li W, Shi R, Huang Z, Lei A. Chem. Asian J. 2016; 11: 1664
    • 13b Collet JW, Morel B, Lin H.-C, Roose TR, Mampuys P, Orru RV. A, Ruijter E, Maes BU. W. Org. Lett. 2020; 22: 914
    • 13c Weng Y, Zhang C, Tang Z, Shrestha M, Huang W, Qu J, Chen Y. Nat. Commun. 2020; 11: 392
    • 13d Huang W, Wang Y, Weng Y, Shrestha M, Qu J, Chen Y. Org. Lett. 2020; 22: 3245
    • 13e Wang Y, Huang W, Wang C, Qu J, Chen Y. Org. Lett. 2020; 22: 4245
  • 14 Hansen AM, Lindsay KB, Antharjanam PK. S, Karaffa J, Daasbjerg K, Flowers II RA, Skrydstrup T. J. Am. Chem. Soc. 2006; 128: 9616
  • 15 Richers J, Heilmann M, Drees M, Tiefenbacher K. Org. Lett. 2016; 18: 6472