CC BY-NC-ND 4.0 · SynOpen 2020; 04(03): 55-61
DOI: 10.1055/s-0040-1707203
paper
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/) (2020) The Author(s)

Synthesis of Quinoxalin-2(1H)-ones and Hexahydroquinoxalin-2(1H)-ones via Oxidative Amidation–Heterocycloannulation

Akula Raghunadh
a   Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad 560049, India
,
b   Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560026, India   eMail: krishnaji.tadiparthi@christuniversity.in
,
Suresh Babu Meruva
a   Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad 560049, India
,
V. Narayana Murthy
a   Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad 560049, India
,
L. Vaikunta Rao
c   Department of Chemistry, GIS, GITAM University, Visakhapatnam 530045, India
,
U. K. Syam Kumar
a   Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad 560049, India
› Institutsangaben
Dr. Krishnaji acknowledges CHRIST (Deemed to be University) for funding through a Major Research Project (MRP # MRPDSC-1723).
Weitere Informationen

Publikationsverlauf

Received: 02. Juni 2020

Accepted after revision: 30. Juni 2020

Publikationsdatum:
18. August 2020 (online)


Abstract

A metal-catalyst-free synthesis of substituted quinoxalin-2-ones from 2,2-dibromo-1-arylethanone by employing an oxidative amidation–heterocycloannulation protocol is reported. The substrate scope of the reaction has been demonstrated and a possible mechanism for this reaction has also been proposed.

Supporting Information

 
  • References

    • 1a Shi L.-L, Zhou H, Wu J.-F, Li X. Mini-Rev. Org. Chem. 2015; 12: 96
    • 1b Carta A, Piras S, Loriga G, Paglietti G. Mini-Rev. Med. Chem. 2006; 6: 1179
    • 1c Li X, Yang K, Li W, Xu W. Drugs Future 2006; 31: 979
    • 1d Akins PT, Atkinson RP. Curr. Med. Res. Opin. 2002; 18: 9
    • 1e Vega AM, Gil MJ, Basilio A, Giraldez A, Fernandez-Alvarez E. Eur. J. Med. Chem. 1986; 21: 251
    • 2a Takeuchi Y, Azuma K, Takakura K, Abe H, Kim H.-S, Wataya Y, Harayama T. Tetrahedron 2001; 57: 1213
    • 2b Taniguchi T, Ogasawara K. Org. Lett. 2000; 2: 3193
    • 3a Sugiura M, Hagio H, Hirabayashi R, Kobayashi S. J. Am. Chem. Soc. 2001; 123: 12510
    • 3b Tekeuchi Y, Abe H, Harayama T. Chem. Pharm. Bull. 1999; 47: 905
    • 3c Kobayashi S, Ueno M, Suzuki R, Ishitani H, Kim H.-S, Wataya Y. J. Org. Chem. 1999; 64: 6833
    • 4a McQuaid LA, Smith EC. R, South KK, Mitch CH, Schoepp DD, True RA, Calligaro DO, Malley PJ. O, Lodge D, Ornstein PL. J. Med. Chem. 1992; 35: 3319
    • 4b Iwata T, Yamagushi M, Hara S, Nakamura M, Ohkura Y. J. Chromatogr. 1986; 362: 209
    • 5a Bourson J, Pouget J, Valeur B. J. Phys. Chem. 1993; 97: 4552
    • 5b Ahmad AR, Mehta LK, Parrick J. Tetrahedron 1995; 51: 12899
    • 6a Smits RA, Lim HD, Hanzer A, Zuiderveld OP, Guaita E, Adami M, Coruzzi G, Leurs R, de Esch IJ. J. Med. Chem. 2008; 51: 2457
    • 6b de la Fuente JR, Canete A, Zanocco AL, Saitz C, Jullian C. J. Org. Chem. 2000; 65: 7949
    • 6c Nunez-Rico JL, Vidal-Ferran A. Org. Lett. 2013; 13: 2066
    • 6d Murthy SN, Madhav B, Nageswar YV. D. Helv. Chim. Acta 2010; 93: 1216
    • 6e Wiedermannová I, Slouka J. J. Heterocycl. Chem. 2001; 38: 1465
    • 6f Zielinski U, Weber FG, Tonew M, Tonew E. Pharmazie 1977; 32: 570
    • 6g Gobec S, Urleb U. Science of Synthesis, Vol. 16. Houben-Weyl Methods of Molecular Transformations, category 2 Georg Thieme; Stuttgart: 2004: 845
    • 7a Brown DJ. Quinoxalines Supplement II . In The Chemistry of Heterocyclic Compounds . Taylor EC, Wipf P. John Wiley & Sons; Hoboken: 2004
    • 7b Heravi MM, Baghernejad B, Oskooie HA. Tetrahedron Lett. 2009; 50: 767
    • 7c Ji Y-F, Chen T.-M, Mao H.-F, Zou J.-P. Chem. Res. Chin. Univ. 2012; 28: 642
    • 7d Yan Y.-M, Li H.-Y, Ren J, Wang S, Ding M.-W. Synlett 2018; 29: 1447
    • 7e Yoshimura M, Ono M, Matsumura K, Watanabe H, Kimura H, Cui M, Nakamoto Y, Togashi K, Okamoto Y, Ihara M, Takahashi R, Saji H. ACS Med. Chem. Lett. 2013; 4: 596
    • 8a Son J.-H, Zhu JS, Phuan P.-W, Cil O, Teuthorn AP, Ku CK, Lee S, Verkman AS, Kurth MJ. J. Med. Chem. 2017; 6: 2401
    • 8b Nagaraj M, Sathiyamoorthy S, Boominathan M, Muthusubramanian S, Bhuvanesh N. J. Heterocycl. Chem. 2013; 50: 1146
    • 8c Gräßle S, Vanderheiden S, Hodapp P, Bulat B, Nieger M, Jung N, Bräse S. Org. Lett. 2016; 18: 3598
    • 8d Dutta NB, Bhuyan M, Baishya G. RSC Adv. 2020; 10: 3615
    • 8e Yan Y.-M, Li H.-Y, Ren J, Wang S, Ding M.-W. Synlett 2018; 29: 1447
    • 9a Murthy VN, Satish NP, Krishnaji T, Madhubabu MV, Rao JS, Rao LV, Raghunadh A. RSC Adv. 2018; 8: 22331
    • 9b Kumar SP, Murthy VN, Ganesh KR, Rao GS, Krishnaji T, Raghunadh A. ChemistrySelect 2018; 3: 6836
    • 9c Jaganmohan C, Kumar KP. V, Reddy GS, Mohanty S, Kumar J, Rao BV, Krishnaji T, Raghunadh A. Synth. Commun. 2018; 48: 168
    • 9d Venkateshwarlu R, Murthy VN, Krishnaji T, Satish PN, Rajesh J, Vidavalur S, Madhu MV, Mohana BH. R, Raghunadh A. RSC Adv. 2020; 10: 9486
    • 9e Jaganmohan Ch, Kumar KP. V, Venkateshwarlu R, Mohanty S, Kumar J, Rao BV, Raghunadh A, Krishnaji T. Synth. Commun. 2020; 14: 2163
  • 10 Raghunadh A, Babu MS, Kumar NA, Kumar GS, Rao LV, Kumar UK. S. Synthesis 2012; 44: 283
  • 11 Makhloufi A, Baitiche M, Merbah M, Benachour D. Synth. Commun. 2011; 41: 3532