Synthesis 2020; 52(21): 3253-3262
DOI: 10.1055/s-0040-1707174
special topic
© Georg Thieme Verlag Stuttgart · New York

Tris(o-phenylenedioxy)cyclotriphosphazene as a Promoter for the Formation of Amide Bonds Between Aromatic Acids and Amines

Farzaneh Soleymani Movahed
a   Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
,
Dinesh N. Sawant
b   Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan   Email: saito.susumu@f.mbox.nagoya-u.ac.jp
,
Dattatraya B. Bagal
a   Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
,
Susumu Saito
a   Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
b   Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan   Email: saito.susumu@f.mbox.nagoya-u.ac.jp
› Author Affiliations
This work was supported by a MEXT Grant-in-aid for Scientific Research on Innovative Areas (18H04247 to SS) and a JSPS Scientific Research (B) (19H02713 to SS); and partially funded by Japan Society for the Promotion of Science (JSPS) fellowship for foreign researchers (P18339 to DB).
Further Information

Publication History

Received: 24 April 2020

Accepted after revision: 04 June 2020

Publication Date:
06 July 2020 (online)


Published as part of the Special Topic Recent Advances in Amide Bond Formation

Abstract

The atom-efficient formation of amide bonds has emerged as a top-priority research field in organic synthesis, as amide bonds constitute the backbones of proteins and represent an important structural motif in drug molecules. Currently, the increasing demand for novel discoveries in this field has focused substantial attention on this challenging subject. Herein, the degradable 1,3,5-triazo-2,4,6-triphosphorine (TAP) motif is presented as a new condensation system for the dehydrative formation of amide bonds between diverse combinations of aromatic carboxylic acids and amines. The underlying reaction mechanism was investigated, and potential catalyst intermediates were characterized using 31P NMR spectroscopy and ESI mass spectrometry.

Supporting Information

 
  • References

  • 1 Vinogradov AA, Yin Y, Suga H. J. Am. Chem. Soc. 2019; 141: 4167
  • 2 Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
  • 3 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
  • 4 Jursic BS, Zdravkovdki Z. Synth. Commun. 1993; 23: 2761
    • 5a Carpino LA. J. Am. Chem. Soc. 1993; 115: 4397
    • 5b El-Faham A, Albericio F. J. Pept. Sci. 2010; 16: 6
    • 5c Subiros-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F. Chem. Eur. J. 2009; 15: 9394
    • 5d König W, Geiger R. Chem. Ber. 1970; 103: 788
    • 5e König W, Geiger R. Chem. Ber. 1970; 103: 2034
    • 6a de Azambuja F, Parac-Vogt TN. ACS Catal. 2019; 9: 10245
    • 6b Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
    • 6c Pattabiraman VR, Bode JW. Nature 2011; 480: 471
    • 6d de Figueiredo RM, Suppo JS, Campagne JM. Chem. Rev. 2016; 116: 12029
    • 6e Georgiou I, Ilyashenko G, Whiting A. Acc. Chem. Res. 2009; 42: 756
    • 6f Charville H, Jackson D, Hodges G, Whiting A. Chem. Commun. 2010; 46: 1813
    • 7a Muramatsu W, Hattori T, Yamamoto H. J. Am. Chem. Soc. 2019; 141: 12288
    • 7b Muramatsu W, Yamamoto H. J. Am. Chem. Soc. 2019; 141: 18926
    • 7c Tsuji H, Yamamoto H. J. Am. Chem. Soc. 2016; 138: 14218
  • 8 Handoko, Satishkumar S, Panigrahi NR, Arora PS. J. Am. Chem. Soc. 2019; 141: 15977
    • 9a Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
    • 9b Ishihara K, Kondo S, Yamamoto H. Synlett 2001; 1371
    • 9c Ishihara K, Ohara S, Yamamoto H. Macromolecules 2000; 33: 3511
    • 9d Maki T, Ishihara K, Yamamoto H. Org. Lett. 2006; 8: 1431
    • 9e Maki T, Ishihara K, Yamamoto H. Tetrahedron 2007; 63: 8645
    • 9f Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
    • 9g Sakakura A, Ohkubo T, Yamashita R, Akakura M, Ishihara K. Org. Lett. 2011; 13: 892
    • 9h Sakakura A, Yamashita R, Ohkubo T, Akakura M, Ishihara K. Aust. J. Chem. 2011; 64: 1458
    • 9i Gernigon N, Al-Zoubi RM, Hall DG. J. Org. Chem. 2012; 77: 8386
    • 9j Yamashita R, Sakakura A, Ishihara K. Org. Lett. 2013; 15: 3654
    • 9k Ishihara K. Top. Organomet. Chem. 2015; 49: 243
    • 9l Mohy El Dine T, Erb W, Berhault Y, Rouden J, Blanchet J. J. Org. Chem. 2015; 80: 4532
    • 9m Ishihara K, Lu Y. Chem. Sci. 2016; 7: 1276
    • 9n Lu Y, Wang K, Ishihara K. Asian J. Chem. 2017; 6: 1191
    • 9o Wang K, Lu Y, Ishihara K. Chem. Commun. 2018; 54: 5410
    • 9p Arkhipenko S, Sabatini MT, Batsanov AS, Karaluka V, Sheppard TD, Rzepa HS, Whiting A. Chem. Sci. 2018; 9: 1058
    • 10a Noda H, Furutachi M, Asada Y, Shibasaki M, Kumagai N. Nat. Chem. 2017; 9: 571
    • 10b Liu Z, Noda H, Shibasaki M, Kumagai N. Org. Lett. 2018; 20: 612
    • 10c Opie CR, Noda H, Shibasaki M, Kumagai N. Chem. Eur. J. 2019; 25: 4648
    • 10d Noda H, Asada Y, Shibasaki M, Kumagai N. J. Am. Chem. Soc. 2019; 141: 1546
    • 11a Charville H, Jackson DA, Hodges G, Whiting A, Wilson MR. Eur. J. Org. Chem. 2011; 5981
    • 11b Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 11c Perreux L, Lpoupy A, Volatron F. Tetrahedron 2002; 58: 2155
  • 12 Sawant DN, Bagal DB, Ogawa S, Selvam K, Saito S. Org. Lett. 2018; 20: 4397
    • 13a de Oliveira VM, de Jesus RS, Gomes AF, Gozzo FC, Umpierre AP, Suarez PA. Z, Rubim JC, Neto BA. D. ChemCatChem 2011; 3: 1911
    • 13b Allen CL, Chhatwal AR, Williams JM. J. Chem. Commun. 2012; 48: 666
    • 13c Rahman M, Kundu D, Hajra A, Majee A. Tetrahedron Lett. 2010; 51: 2896
    • 13d Shekhar AC, Kumar AR, Sathaiah G, Paul VL, Sridhar M, Rao PS. Tetrahedron Lett. 2009; 50: 7099
    • 13e Reddy CS, Nagaraj A, Jalapathi P. Chin. Chem. Lett. 2007; 18: 1213
    • 13f Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 14a Shioiri T, Ninomiya K, Yamada S. J. Am. Chem. Soc. 1972; 94: 6203
    • 14b Kokare ND, Nagawade RR, Rane VP, Shinde DB. Synthesis 2007; 766
    • 14c Klose J, Bienert M, Mollenkopf C, Wehle D, Zhang CW, Carpino LA, Henklein P. Chem. Commun. 1999; 1847
    • 14d Brady SF, Freidinger RM, Paleveda WJ, Colton CD, Homnick CF, Whitter WL, Curley P, Nutt RF, Veber DF. J. Org. Chem. 1987; 52: 764
    • 14e Ying J, Lin R, Xu P, Wu Y, Liu Y, Zhao Y. Sci. Rep. 2018; 8: 936
  • 15 Bayne JM, Stephan DW. Chem. Soc. Rev. 2016; 45: 765
    • 16a Sakakura A, Sakuma M, Katsukawa M, Ishihara K. Heterocycles 2008; 76: 657
    • 16b Yadav M, Krishnamurthy R. Org. Lett. 2019; 21: 7400
    • 17a Du Y, Oishi S, Saito S. Chem. Eur. J. 2011; 17: 12262
    • 17b Foo SW, Oishi S, Saito S. Tetrahedron Lett. 2012; 53: 5445
    • 18a Allcock HR, Walsh EJ. J. Am. Chem. Soc. 1972; 94: 4538
    • 18b Allcock HR, Walsh EJ. J. Am. Chem. Soc. 1969; 91: 3102
    • 18c Allcock HR. Chem. Rev. 1972; 72: 315
    • 18d Allcock HR, Walsh EJ. J. Am. Chem. Soc. 1972; 94: 119
  • 19 Allcock HR, Sunderland NJ. Macromolecules 2001; 34: 3069
    • 20a Knowles JR. Annu. Rev. Biochem. 1980; 49: 877
    • 20b Wiegand TW, Janssen RC, Eaton BE. Chem. Biol. 1997; 4: 675
    • 20c Wilcox M, Nirenberg M. Proc. Natl. Acad. Sci. U. S. A. 1968; 61: 229
    • 21a Tian N.-N, Wang L.-S, Jiang R.-Y. J. Chem. Eng. Data 2011; 56: 3208
    • 21b Zhou F, Gu KH, Zhang ZY, Zhang MY, Zhou S, Shen Z, Fan XH. Angew. Chem. Int. Ed. 2016; 55: 15007
    • 21c Comotti A, Bracco S, Ferretti L, Mauri M, Simonutti R, Sozzani P. Chem. Commun. 2007; 350
  • 22 Saito S, Noyori R. JP Patent filed: 2013-065083; opened: 2014-189509, 2014.
  • 23 Ye C, Zhang Z, Liu W. Synth. Commun. 2002; 32: 203