Synlett 2021; 32(05): 457-471
DOI: 10.1055/s-0040-1706869
account
The Power of Transition Metals: An Unending Well-Spring of New Reactivity
© Georg Thieme Verlag Stuttgart · New York

Building Complexity and Achieving Selectivity through Catalysis – Case Studies from the Pharmaceutical Pipeline

Matthew G. Beaver
a   Amgen Inc., Process Development, Drug Substance Technologies, 360 Binney Street, Cambridge, Massachusetts, United States
,
Seb Caille
b   Amgen Inc., Process Development, Drug Substance Technologies, One Amgen Center Drive, Thousand Oaks, California 91320, United States   eMail: jtedrow@amgen.com   eMail: othiel@amgen.com
,
Robert P. Farrell
b   Amgen Inc., Process Development, Drug Substance Technologies, One Amgen Center Drive, Thousand Oaks, California 91320, United States   eMail: jtedrow@amgen.com   eMail: othiel@amgen.com
,
Andreas R. Rötheli
a   Amgen Inc., Process Development, Drug Substance Technologies, 360 Binney Street, Cambridge, Massachusetts, United States
,
Austin G. Smith
b   Amgen Inc., Process Development, Drug Substance Technologies, One Amgen Center Drive, Thousand Oaks, California 91320, United States   eMail: jtedrow@amgen.com   eMail: othiel@amgen.com
,
Jason S. Tedrow
a   Amgen Inc., Process Development, Drug Substance Technologies, 360 Binney Street, Cambridge, Massachusetts, United States
,
Oliver R. Thiel
a   Amgen Inc., Process Development, Drug Substance Technologies, 360 Binney Street, Cambridge, Massachusetts, United States
› Institutsangaben
All the authors are current employees of Amgen Inc.
Weitere Informationen

Publikationsverlauf

Received: 15. Mai 2020

Accepted after revision: 30. Mai 2020

Publikationsdatum:
23. Juli 2020 (online)


Dedicated to Prof. Barry M. Trost in recognition of his contributions to the advancement of transition-metal catalysis and his efforts in training the next generations of organic chemists.

Abstract

The last decade of small-molecule process development has witnessed a trend of increasing molecular complexity for clinical candidates. The continued advance of novel catalytic methods and subsequent translation to efficient and scalable processes has enabled process chemists to overcome the challenges associated with increasing complexity. This Account highlights several examples from the process chemistry laboratories at Amgen.

1 Introduction

2 The Evolution of Molecular Complexity

3 Catalysis as a Lever to Build Complexity

4 Ru(II)-Catalyzed Dynamic Kinetic Resolution Enabling the Manufacture of AMG 232

5 Application of Enzymatic Desymmetrization toward Scale-Up of the MCL-1 Inhibitor AMG 176

6 Synthesis of Fucostatin 1: Catalytic Asymmetric Transfer Hydrogenation

7 Manganese-Catalyzed Asymmetric Epoxidation To Prepare a Carfilzomib Intermediate

8 Asymmetric Reduction Strategies: Novel Apelin Receptor Agonists and AMG 986

9 Conclusions

 
  • References

    • 1a Trost BM. Science 1991; 254: 1471
    • 1b Trost BM. Angew. Chem. Int. Ed. 1995; 34: 259 ; Angew. Chem. 1995, 107, 285
  • 2 Tucker JL, Faul MM. Nature 2016; 534: 27
  • 3 Roshangar FD, Colberg J, Dunn PJ, Gallou F, Hayler JD, Koenig SG, Kopach ME, Leahy DK, Mergelsberg I, Tucker JL, Sheldon RA, Senanayake CH. Green Chem. 2017; 19: 281
  • 4 Caille S, Cui S, Faul MM, Mennen SM, Tedrow JS, Walker SD. J. Org. Chem. 2019; 84: 4583
  • 5 Faul MM, Busacca CA, Eriksson MC, Hicks F, Kiesman WF, Smulkowski M, Orr JD, Pfeiffer S. Org. Process Res. Dev. 2014; 18: 594
    • 6a Walters WP, Green J, Weiss JR, Murcko MA. J. Med. Chem. 2011; 54: 6405
    • 6b Dandapani S, Marcaurelle LA. Nat. Chem. Biol. 2010; 6: 861
    • 6c Mendez-Lucio JL, Medina-Franco JL. Drug Discovery Today 2017; 22: 120
    • 7a Gluck WL, Gounder MM, Frank R, Eskens F, Blay JY, Cassier PA, Soria J.-C, Chawla S, de Weger V, Wagner AJ, Siegal D, De Vos F, Rasmussen E, Henary HA. Invest. New Drugs 2020; 38: 831
    • 7b Sun D, Li Z, Rew Y, Gribble M, Bartberger MD, Beck HP, Canon J, Chen A, Chen X, Chow D, Deignan J, Duquette J, Eksterowicz J, Fisher B, Fox BM, Fu J, Gonzalez AZ, Gonzalez-Lopez De Turiso F, Houze JB, Huang X, Jiang M, Jin L, Kayser F, Liu JJ, Lo M.-C, Long AM, Lucas B, McGee LR, McIntosh J, Mihalic J, Oliner JD, Osgood T, Peterson ML, Roveto P, Saiki AY, Shaffer P, Toteva M, Wang Y, Wang YC, Wortman S, Yakowec P, Yan X, Ye Q, Yu D, Yu M, Zhao X, Zhou J, Zhu J, Olson SH, Medina JC. J. Med. Chem. 2014; 57: 1454
  • 8 For a literature example of high trans alkylation of cis-5,6-disubstituted δ-lactones, see: Grieco PA, Williams E, Tanaka H, Gilman S. J. Org. Chem. 1980; 45: 3537
    • 9a Cochran BM, Corbett MT, Correll TL, Fang Y.-Q, Flick TG, Jones SC, Silva Elipe MV, Smith AG, Tucker JL, Vounatsos F, Wells G, Yeung D, Walker SD, Bio MM, Caille S. J. Org. Chem. 2019; 84: 4763
    • 9b Lucas BS, Fisher B, McGee LR, Olson SH, Medina JC, Cheung E. J. Am. Chem. Soc. 2012; 134: 12855
  • 10 Smith AG, Bio MM, Colyer JT, Diker K, Gorins G, Jones SC, Silva Elipe M, Tedrow JS, Walker SD, Caille S. Org. Proc. Res. Dev. 2020; 24: 1164
  • 11 Matsumura K, Arai N, Hori K, Saito T, Sayo N, Ohkuma T. J. Am. Chem. Soc. 2011; 133: 10696
  • 12 For examples of ester reductions using Noyori-type Ru catalysts and H2, see: Werkmeister S, Junge K, Beller M. Org. Process Res. Dev. 2014; 18: 289 ; and references cited therein
  • 13 Rescourio G, Gonzalez AZ, Jabri S, Belmontes B, Moody G, Whittington D, Huang X, Caenepeel S, Cardozo M, Cheng AC, Chow D, Dou H, Jones A, Kelly RC, Li Y, Lizarzaburu M, Lo MC, Mallari R, Meleza C, Rew Y, Simonovich S, Sun D, Turcotte S, Ya X, Wong SG, Yanez E, Zancanella M, Houze J, Medina JG, Hughes PE, Brown SP. J. Med. Chem. 2019; 62: 10258
  • 14 Cyclobutane anhydride manufactured via photochemical [2+2] cycloaddition of ethylene and maleic anhydride was limited to ~500 g annually at $36,000/kg.
  • 15 Daly AM, Gilheany DG. Tetrahedron: Asymmetry 2003; 14: 127
  • 16 Laumen K, Schneider M. Tetrahedron Lett. 1985; 26: 2073
  • 17 Ulrich A, Breitgoff D, Klein P, Laumen KE, Schneider ME. Tetrahedron Lett. 1989; 30: 1793
  • 18 Katritzky AR, Rachwal S, Rachwal B. J. Chem. Soc., Perkin Trans. 1 1986; 791
  • 19 Chartrain M, Chu L. Curr. Pharm. Biotechnol. 2008; 9: 447
  • 20 Becker DJ, Lowe JB. Glycobiology 2003; 13: 41R
  • 21 Allen JG, Mujacic M, Frohn MJ, Pickrell AJ, Kodama P, Bagal D, San Miguel T, Sickmier EA, Osgood S, Swietlow A, Li V, Jordan JB, Kim K.-W, Russo A.-M, Kim Y.-J, Caille S, Achmatowicz M, Thiel O, Fotsch CH, Reddy P, McCarter JD. ACS Chem. Biol. 2016; 11: 2734
  • 22 Achmatowicz MA, Allen JG, Bio MM, Bartberger MD, Borths CJ, Colyer JT, Crockett RD, Hwang T.-L, Koek JN, Osgood SA, Roberts SW, Swietlow A, Thiel OR, Caille S. J. Org. Chem. 2016; 81: 4736
  • 23 d-(–)-Arabinose can be purchased for less than $100 kg.
  • 24 Wu J, Serianni AS. Carbohydr. Res. 1991; 210: 51
  • 25 Pyranoside products form and crystallize from the reaction mixture upon prolonged (>10 h) exposure to acid.
  • 26 Heyns K, Heinemann R. Ann. 1947; 558: 147
  • 27 The pH was controlled using additions of NaHCO3.
    • 28a Guthrie JP. Can. J. Chem. 1975; 53: 898
    • 28b Stewart R, Van Dyke JD. Can. J. Chem. 1972; 50: 1992
  • 29 Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R. J. Am. Chem. Soc. 1995; 117: 7562
  • 30 The dr was 65:35 with S,S-TsDPEN RuCl (mes).
  • 31 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
  • 32 The predominance of species B was corroborated by CCSD(T)/aug-cc-pVDZ single-point energies upon the M06-2X/6-31+G(d,p) geometries.
  • 33 Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S, Trudel S, Kukreti V, Bahlis N, Alsina M, Chanan-Khan A, Francis B, Reu FJ, Somlo G, Zonder J, Song K, Stewart AK, Stadtmauer E, Kunkel L, Wear S, Wong AF, Orlowski RZ, Jagannath S. Blood 2012; 120: 2817
    • 34a Dornan PK, Anthoine T, Beaver MG, Cheng GC, Cohen DE, Cui S, Lake WE, Langille NF, Lucas SP, Patel J, Powazinik WIV, Roberts SW, Scardino C, Tucker JL, Spada S, Zeng A, Walker SD. Org. Process Res. Dev. 2020; 24: 481
    • 34b Beaver MG, Shi X, Riedel J, Patel P, Zeng A, Corbett MT, Robinson JA, Parsons AT, Cui S, Baucom K, Lovette MA, Icten E, Brown DA, Allian A, Flick TG, Chen W, Yang N, Walker SD. Org. Process Res. Dev. 2020; 24: 490
  • 35 Cussó O, Ribas X, Costas M. Chem. Commun. 2015; 51: 14285
  • 36 Wang B, Miao C, Wang S, Xia C, Sun W. Chem. Eur. J. 2012; 18: 6750
    • 37a Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, Jaarsma T, Krum H, Rastogi V, Rohde LE, Samal UC, Shimokawa H, Siswanto BB, Sliwa K, Filippatos G. ESC Heart Fail. 2014; 1: 4
    • 37b Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, Ikonomidis JS, Khavjou O, Konstam MA, Maddox TM, Nichol G, Pham M, Piña IL, Trogdon JG. Circ. Heart Fail. 2013; 6: 606
    • 37c Mozzafarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després J.-P, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER. III, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB. Circulation 2016; 133: 447
    • 37d Gomez-Soto FM, Andrey JL, Garcia-Egido AA, Escobar MA, Romero SP, Garcia-Arjona R. Int. J. Cardiol. 2011; 151: 40
    • 37e Tanai E, Frantz S. Compr. Physiol. 2015; 6: 187
    • 38a Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG. F, Coats AJ. S, Falk V, Ramón González-Juanatey J, Harjola V.-K, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM. C, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. Eur. J. Heart Fail. 2016; 18: 891
    • 38b Gomberg-Maitland M, Baran DA, Fuster V. Arch. Intern. Med. 2001; 161: 342
  • 39 Ason B, Chen Y, Guo Q, Hoagland KM, Chui RW, Fielden M, Sutherland W, Chen R, Zhang Y, Mihardja S, Ma X, Li X, Sun Y, Liu D, Nguyen K, Wang J, Li N, Rajamani S, Qu Y, Gao BX, Boden A, Chintalgattu V, Turk JR, Chan J, Hu LA, Dransfield P, Houze J, Wong J, Ma J, Pattaropong V, Véniant MM, Vargas HM, Swaminath G, Khakoo AY. JCI Insight 2020; 5: e132898
  • 40 Chen N, Chen X, Chen Y, Cheng AC, Connors RV, Deignan J, Dransfield PJ, Du X, Fu Z, Heath JA, Horne DB, Houze J, Kaller MR, Khakoo AY, Kopecky DJ, Lai S.-J, Ma LR, McGee JC, Medina JT, Mihalic N, Nishimura SH, Olson V, Pattaropong G, Swaminath Z, Wang X, Yang K, Yeh W.-C, DeBenedetto MV, Farrell RP, Hedley SJ, Judd TC, Kayser F. WO2016187308A1, 2016
  • 41 Kraft S, Ryan K, Kargbo RB. J. Am. Chem. Soc. 2017; 139: 11630
  • 42 Paul J, Palmer C. WO1999015481A1, 1999
  • 43 Yuasa Y, Yuasa Y, Tsuruta H. Can. J. Chem. 1998; 76: 1304
  • 44 unpublished results.
  • 45 The desired enantiomer could be upgraded to >99% ee following a single recrystallization of the isolated product.
  • 46 Both enantiomers of Josiphos J216 are known and are available on kilogram scale. For a literature reference, see: Blaser H.-U, Breiden W, Pugin B, Spindler F, Studer M, Togni A. Top. Catal. 2002; 19: 3
  • 47 Noyori R, Ikeda T, Ohkuma T, Widhalm M, Kitamura M, Takaya H, Akutagawa S, Sayo N, Saito T, Taketomi T, Kumobayashi H. J. Am. Chem. Soc. 1989; 111: 9134

    • For syn selectivity, see:
    • 48a Eustache F, Dalko PI, Cossy J. Org. Lett. 2002; 4: 1263
    • 48b Son S.-M, Lee H.-K. J. Org. Chem. 2014; 79: 2666
    • 48c Limanto J, Krska SW, Dorner BT, Vazquez E, Yoshikawa N, Tan L. Org. Lett. 2010; 12: 512
    • 48d Xiong Z, Pei C, Lv H, Zhang X. Chem. Commun. 2018; 54: 3883

    • For anti selectivity, see:
    • 48e Seashore-Ludlow B, Villo P, Häcker C, Somfai P. Org. Lett. 2010; 12: 5274
    • 48f Koike T, Murata K, Ikariya T. Org. Lett. 2000; 2: 3833

    • For a review, see:
    • 48g Bhat V, Welin ER, Guo X, Stoltz BM. Chem. Rev. 2017; 117: 4528
    • 48h Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
    • 49a Hannedouche J, Clarkson GJ, Wills M. J. Am. Chem. Soc. 2004; 126: 986
    • 49b Cheung FK, Hayes AM, Hannedouche J, Yim AS. Y, Wills M. J. Org. Chem. 2005; 70: 3188
    • 49c Nedden HG, Zanotti-Gerosa A, Wills M. Chem. Rec. 2016; 16: 2623
  • 50 Hodgkinson R, Jurčik V, Zanotti-Gerosa A, Nedden HG, Blackaby A, Clarkson GJ, Wills M. Organometallics 2014; 33: 5517
    • 51a Applegate GA, Berkowitz DB. Adv. Synth. Catal. 2015; 357: 1619
    • 51b Kaluzna A, Matsuda T, Sewell AK, Stewart JD. J. Am. Chem. Soc. 2004; 126: 12827
    • 51c Kalaitzakis D, Rozzell JD, Kambourakis S, Smonou I. Org. Lett. 2005; 7: 4799
    • 51d Ravía SP, Carrera I, Seoane GA, Vero S, Gamenara D. Tetrahedron: Asymmetry 2009; 20: 1393
    • 51e Cuetos A, Rioz-Martínez A, Bisogno FR, Grischek B, Lavandera I, de Gonzalo G, Kroutil W, Gotor V. Adv. Synth. Catal. 2012; 354: 1743
    • 51f Deasy RE, Maguire AR. Eur. J. Org. Chem. 2014; 3737
    • 51g Fujisawa T, Yamanaka K, Mobele BI, Shimizu M. Tetrahedron Lett. 1991; 32: 399
    • 51h Maguire AR, O’Riordan N. Tetrahedron Lett. 1999; 40: 9285