Synthesis 2021; 53(03): 418-446
DOI: 10.1055/s-0040-1706297
review

Synthesis of Lactams via Isocyanide-Based Multicomponent Reactions

Shrikant G. Pharande


This review is dedicated to Albert Einstein

Abstract

Lactams are very important heterocycles as a result of their presence in a wide range of bioactive molecules, natural products and drugs, and also due their utility as versatile synthetic intermediates. Due to these reasons, numerous efforts have focused on the development of effective and efficient methods for their synthesis. Compared to conventional two-component reactions, multicomponent reactions (MCRs), particularly isocyanide-based MCRs, are widely used for the synthesis of a range of small heterocycles including lactam analogues. Despite their numerous applications in almost every field of chemistry, as yet there is no dedicated review on isocyanide-based multicomponent reactions (IMCRs) concerning the synthesis of lactams. Therefore, this review presents strategies towards the synthesis of α-, β-, γ-, δ- and ε-lactams using IMCRs or IMCRs/post-transformation reactions reported in the literature between 2000 and 2020.

1 Introduction

2 Developments in Lactam Synthesis

2.1 α-Lactams

2.2 β-Lactams

2.3 γ-Lactams

2.3.1 General γ-Lactams

2.3.2 Benzo-Fused γ-Lactams

2.3.3 Spiro γ-Lactams

2.3.4 α,β-Unsaturated γ-Lactams

2.3.5 Polycyclic Fused γ-Lactams

2.4 δ-Lactams

2.5 ε-Lactams

3 Conclusions



Publication History

Received: 16 May 2020

Accepted after revision: 22 August 2020

Article published online:
07 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Fleming A. Br. J. Exp. Pathol. 1929; 10: 226
    • 2a Shahid M, Sobia F, Singh A, Malik A, Khan HM, Jonas D, Hawkey PM. Crit. Rev. Microbiol. 2009; 35: 81
    • 2b Kapoor G, Saigal S, Elongavan A. J. Anaesthesiol. Clin. Pharmacol. 2017; 33: 300
    • 2c Tahlan K, Jensen SE. J. Antibiot. 2013; 66: 401
    • 3a Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
    • 3b Alborz M, Jarrahpour A, Pournejati R, Karbalaei-Heidari HR, Sinou V, Latour C, Brunel JM, Sharghi H, Aberi M, Turos E, Wojtas L. Eur. J. Med. Chem. 2018; 143: 283
    • 3c Matviiuk T, Madacki J, Mori G, Orena BS, Menendez C, Kysil A, André-Barrès C, Rodriguez F, Korduláková J, Mallet-Ladeira S, Voitenko Z, Pasca MR, Lherbet C, Baltas M. Eur. J. Med. Chem. 2016; 123: 462
    • 3d Medvedeva NI, Kazakova OB, Lopatina TV, Smirnova IE, Giniyatullina GV, Baikova IP, Kataev VE. Eur. J. Med. Chem. 2018; 143: 464
  • 5 Rad JA, Jarrahpour A, Latour C, Sinou V, Brunel JM, Zgou H, Mabkhot Y, Hadda TB, Turos T. Med. Chem. Res. 2017; 26: 2235
    • 6a Sperka T, Pitlik J, Bagossi P, Tözsér J. Bioorg. Med. Chem. Lett. 2005; 15: 3086
    • 6b Chang Y.-CE, Yu X, Zhang Y, Tie Y, Wang YF, Yashchuk S, Ghosh AK, Harrison RW, Weber IT. J. Med. Chem. 2012; 55: 3387
    • 7a O’Boyle NM, Carr M, Greene LM, Bergin O, Nathwani SM, McCabe T, Lloyd DG, Zisterer DM, Meegan MJ. J. Med. Chem. 2010; 53: 8569
    • 7b Hardcastle IR, Liu J, Valeur E, Watson A, Ahmed SU, Blackburn TJ, Bennaceur K, Clegg W, Drummond C, Endicott JA, Golding BT, Griffin RJ, Gruber J, Haggerty K, Harrington RW, Hutton C, Kemp S, Lu X, McDonnell JM, Newell DR, Noble ME. M, Payne SL, Revill CH, Riedinger C, Xu Q, Lunec J. J. Med. Chem. 2011; 54: 1233
    • 7c Rew Y, Sun D. J. Med. Chem. 2014; 57: 6332
    • 7d Jane deSolms S, Ciccarone TM, MacTough SC, Shaw AW, Buser CA, Ellis-Hutchings M, Fernandes C, Hamilton KA, Huber HE, Kohl NE, Lobell RB, Robinson RG, Tsou NN, Walsh ES, Graham SL, Beese LS, Taylor JS. J. Med. Chem. 2003; 46: 2973
    • 8a Saturnino C, Fusco B, Saturnino P, Martino GD. E, Rocco F, Lancelot J.-C. Biol. Pharm. Bull. 2000; 23: 654
    • 8b Okumura K, Inoue I, Ikezaki M, Hayashi G, Nurimoto S, Shintomi K. J. Med. Chem. 1966; 9: 315
  • 9 Gillard K, Miller HB, Blackledge MS. Chem. Biol. Drug Des. 2018; 92: 1822
  • 10 Atigadda VR, Brouillette WJ, Duarte F, Ali SM, Babu YS, Bantia S, Chand P, Chu N, Montgomery JA, Walsh DA, Sudbeck EA, Finley J, Luo M, Air GM, Laver GW. J. Med. Chem. 1999; 42: 2332
  • 11 Pei Z, Li X, von Geldern TW, Longenecker K, Pireh D, Stewart KD, Backes BJ, Lai C, Lubben TH, Ballaron SJ, Beno DW. A, Kempf-Grote AJ, Sham HL, Trevillyan JM. J. Med. Chem. 2007; 50: 1983
    • 12a Reddy PA, Woodward KE, McIlheran SM, Hsiang BC. H, Latifi TN, Hill MW, Rothman SM, Ferrendelli JA, Covey DF. J. Med. Chem. 1997; 40: 44
    • 12b Brouillettet WJ, Grunewald GL. J. Med. Chem. 1984; 27: 202
    • 13a Royles BJ. L. Chem. Rev. 1995; 95: 1981
    • 13b Davidson BS, Schumacher RW. Tetrahedron 1993; 49: 6569
    • 13c Garcia-Ruiz C, Sarabia F. Mar. Drugs 2014; 12: 1580
    • 13d He Q, Chatani N. J. Org. Chem. 2018; 83: 13587
    • 13e Davies SG, Roberts PM, Smith AD. Org. Biomol. Chem. 2007; 5: 1405
    • 13f Tikhov R, Kuznetsov NY. Org. Biomol. Chem. 2020; 18: 2793
    • 13g Saldívar-González FI, Lenci E, Trabocchi A, Medina-Franco JL. RSC Adv. 2019; 9: 27105
  • 14 Fernandes R, Amador P, Prudencio C. Rev. Med. Microbiol. 2013; 24: 7
    • 15a Baldwin JE, Lowe C, Schofield CJ, Lee E. Tetrahedron Lett. 1986; 27: 3461
    • 15b Boyd DB, Elzey TK, Hatfield LD, Kinnick MD, Morin JM. Jr. Tetrahedron Lett. 1986; 27: 3453
  • 16 Mohammadkhani L, Heravi MM. ChemistrySelect 2019; 4: 10187
    • 17a Passerini M. Gazz. Chim. Ital. 1921; 51: 126
    • 17b Passerini M. Gazz. Chim. Ital. 1921; 51: 181
  • 18 Ugi I, Meyr R, Fetzer U, Steinbruckner C. Angew. Chem. 1959; 71: 386
    • 19a Ugi I. Angew. Chem., Int. Ed. Eng. 1962; 1: 8 ; Angew. Chem. 1962, 74, 9
    • 19b Ugi I, Steinbruckner C. Chem. Ber. 1961; 94: 2802
  • 21 Cesare V, Lyons TM, Lengyel I. Synthesis 2002; 1716
  • 22 Liu N, Cao S, Wu J, Shen L, Yu J, Zhang J, Li H, Qian X. Mol. Diversity 2010; 14: 501
  • 23 Zeng X.-H, Wang H.-M, Yan Y.-M, Wu L, Ding M.-W. Tetrahedron 2014; 70: 3647
  • 24 Gao X, Shan C, Chen Z, Liu Y, Zhao X, Zhang A, Yu P, Galons H, Lan Y, Lu K. Org. Biomol. Chem. 2018; 16: 6096
  • 25 Santra S, Andreana PR. Org. Lett. 2007; 9: 5035
  • 26 Neochoritis CG, Stotani S, Mishra B, Dömling A. Org. Lett. 2015; 17: 2002
  • 27 Schneider G, Neidhart W, Giller T, Schmid G. Angew. Chem. Int. Ed. 1999; 38: 2894
  • 28 Czarna A, Beck B, Srivastava S, Popowicz GM, Wolf S, Huang Y, Bista M, Holak TA, Dömling A. Angew. Chem. Int. Ed. 2010; 49: 5352
  • 29 Shaabani S, Neochoritis CG, Twarda-Clapa A, Musielak B, Holak TA, Dömling A. Med. Chem. Commun. 2017; 8: 1046
  • 30 Blackie MA. L, Feng T.-S, Smith PJ, Chibale K. ARKIVOC 2016; (iii): 214
  • 31 Avilés E, Rodríguez AD. Org. Lett. 2010; 12: 5290
  • 32 Wratten SJ, Faulkner DJ, Hirotsu K, Clardy J. Tetrahedron Lett. 1978; 19: 4345
  • 33 Rainoldi G, Lesma G, Picozzi C, Presti LL, Silvani A. RSC Adv. 2018; 8: 34903
  • 34 Madej A, Paprocki D, Koszelewski D, Żądło-Dobrowolska A, Brzozowska A, Walde P, Ostaszewski R. RSC Adv. 2017; 7: 33344
  • 35 Pirrung MC, Sarma KD. J. Am. Chem. Soc. 2004; 126: 444
  • 36 Pirrung MC, Sarma KD. Synlett 2004; 1425
  • 37 Kanizsai I, Gyónfalvi S, Szakonyi Z, Sillanpää R, Fülöp F. Green Chem. 2007; 9: 357
    • 38a Gedey S, Van der Eycken J, Fülöp F. Org. Lett. 2002; 4: 1967
    • 38b Gedey S, Fülöp F, Vainiotalo P, De Witte PA. M, Zupkó I. J. Heterocycl. Chem. 2003; 40: 951
  • 39 Szakonyi Z, Sillanpää R, Fülöp F. Mol Diversity 2010; 14: 59
  • 41 Li Z, Sharma UK, Liu Z, Sharma N, Harvey JN, Van der Eycken EV. Eur. J. Org. Chem. 2015; 3957
  • 42 Ghabraie E, Balalaie S, Mehrparvar S, Rominger F. J. Org. Chem. 2014; 79: 7926
    • 43a Ramanivas T, Parameshwar M, Gayatri G, Nanubolu JB, Srivastava AK. Eur. J. Org. Chem. 2017; 2245
    • 43b Ghoshal A, Kumar A, Yugandhar D, Sona C, Kuriakose S, Nagesh K, Rashid M, Singh SK, Wahajuddin M, Yadav PN, Srivastava AK. Eur. J. Med. Chem. 2018; 152: 148
  • 44 Fan L, Adams AM, Polisar JG, Ganem B. J. Org. Chem. 2008; 73: 9720
  • 45 Zidan A, Garrec J, Cordier M, El-Naggar AM, Abd El-Sattar NE. A, Ali AK, Ali Hassan M, El Kaim L. Angew. Chem. Int. Ed. 2017; 56: 12179
  • 46 Cheibas C, Cordier M, Li Y, El Kaïm L. Eur. J. Org. Chem. 2019; 4457
  • 47 Tye H, Whittaker M. Org. Biomol. Chem. 2004; 2: 813
  • 48 Harriman GC. B. Tetrahedron Lett. 1997; 38: 5591
  • 49 Mironov MA, Ivantsova MN, Mokrushin VS. Mol. Diversity 2003; 6: 193
  • 50 Jida M, Malaquin S, Deprez-Poulain R, Laconde G, Deprez D. Tetrahedron Lett. 2010; 51: 5109
  • 51 Krelaus R, Westermann B. Tetrahedron Lett. 2004; 45: 5987
  • 53 Cioc RC, Schaepkens van Riempst L, Schuckman P, Ruijter E, Orru RV. A. Synthesis 2017; 49: 1664
  • 54 Echeverria V. Front. Pharmacol. 2012; 3: 173
  • 55 Polindara-García LA, Montesinos-Miguel D, Vazquez A. Org. Biomol. Chem. 2015; 13: 9065
  • 56 Shiri M, Mirpour-Marzoni SZ, Bozorgpour-Savadjani Z, Soleymanifard B, Kruger HG. Monatsh. Chem. 2014; 145: 1947
  • 57 Gunawan S, Petit J, Hulme C. ACS Comb. Sci. 2012; 14: 160
  • 58 Gil C, Bräse S. J. Comb. Chem. 2009; 11: 175
  • 59 Liu Z, Nefzi A. J. Comb. Chem. 2010; 12: 566
  • 60 El Kaïm L, Grimaud L, Miranda LD, Vieu E. Tetrahedron Lett. 2006; 47: 8259
  • 61 El Kaïm L, Grimaud L, Miranda LD, Vieu E, Cano-Herrera M.-A, Perez-Labrada K. Chem. Commun. 2010; 46: 2489
  • 62 Zidan A, Cordier M, El-Naggar AM, Abd El-Sattar NE. A, Hassan MA, Ali AK, El Kaïm L. Org. Lett. 2018; 20: 2568
  • 63 Boltjes A, Liao GP, Zhao T, Herdtweck E, Dömling A. Med. Chem. Commun. 2014; 5: 949
  • 64 Borja-Miranda A, Sanchez-Chavez AC, Polindara-García LA. Eur. J. Org. Chem. 2019; 2453
  • 65 Khan IA, Saxena AK. Tetrahedron 2012; 68: 294
  • 66 Bonnaterre F, Bois-Choussy M, Zhu J. Org. Lett. 2006; 8: 4351
  • 67 Erb W, Neuville L, Zhu J. J. Org. Chem. 2009; 74: 3109
  • 68 Lei J, Xu Z.-G, Li S.-Q, Xu J, Zhu J, Chen Z.-Z. Mol Diversity 2016; 20: 859
    • 69a Zard SZ. Acc. Chem. Res. 2018; 51: 1722
    • 69b Rentería-Gómez A, Islas-Jácome A, Jiménez-Halla JO. C, Gámez-Montaño R. Tetrahedron Lett. 2014; 55: 6567
  • 70 Umkehrer M, Kalinski C, Kolb J, Burdack C. Tetrahedron Lett. 2006; 47: 2391
  • 71 Bararjanian M, Hosseinzadeh S, Balalaie S, Bijanzadeh HR, Wolf E. Tetrahedron Lett. 2011; 52: 3329
  • 72 Butler RN. In Comprehensive Heterocyclic Chemistry II, Vol. 4. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; Oxford: 1996: 621
  • 73 Marcos CF, Marcaccini S, Menchi G, Pepino R, Torroba T. Tetrahedron Lett. 2008; 49: 149
  • 74 Gunawan S, Hulme C. Org. Biomol. Chem. 2013; 11: 6036
  • 75 Rentería-Gómez A, Islas-Jácome A, Cruz-Jiménez AE, Manzano-Velázquez JC, Rojas-Lima S, Jiménez-Halla JO. C, Gámez-Montaño R. ACS Omega 2016; 1: 943
  • 76 Salcedo A, Neuville L, Zhu J. J. Org. Chem. 2008; 73: 3600
  • 77 García-González MC, Hernández-Vázquez E, Gordillo-Cruz RE, Miranda LD. Chem. Commun. 2015; 51: 11669
  • 78 Maddirala AR, Andreana PR. Beilstein J. Org. Chem. 2018; 14: 875
  • 79 Ghandi M, Zarezadeh N, Abbasi A. Org. Biomol. Chem. 2015; 13: 8211
  • 80 Stolyarenko VY, Evdokimov AA, Shishkin VI. Mendeleev Commun. 2013; 23: 108
  • 81 Gámez-Montaño R, Ibarra-Rivera T, El Kaïm L, Miranda LD. Synthesis 2010; 1285
  • 82 Alvarez-Rodríguez NV, Islas-Jácome A, Rentería-Gomez A, Cárdenas-Galindo LE, Basavanaga UM. V, Gámez-Montaño R. New J. Chem. 2018; 42: 1600
  • 83 Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
  • 84 Schultz EE, Pujanauski BG, Sarpong R. Org. Lett. 2012; 14: 648
    • 85a Keating TA, Armstrong RW. J. Am. Chem. Soc. 1995; 117: 7842
    • 85b van der Heijden G, Jong JA. W, Ruijter E, Orru RV. A. Org. Lett. 2016; 18: 984
  • 86 Nagasaka Y, Shintaku S, Matsumura K, Masuda A, Asakawa T, Inai M, Egi M, Hamashima Y, Ishikawa Y, Kan T. Org. Lett. 2017; 19: 3839
  • 87 Ku IW, Kang SB, Keum G, Kim Y. Bull. Korean Chem. Soc. 2011; 32: 3167
  • 88 Alvarez-Rodríguez NV, Dos Santos A, El Kaïm L, Gámez-Montaño R. Synlett 2015; 26: 2253
  • 89 Peshkov AA, Peshkov VA, Li Z, Pereshivko OP, Van der Eycken EV. Eur. J. Org. Chem. 2014; 6390
  • 90 Li Z, Kumar A, Peshkov A, Van der Eycken EV. Tetrahedron Lett. 2016; 57: 754
  • 91 Yugandhar D, Kuriakose S, Nanubolu JB, Srivastava AK. Org. Lett. 2016; 18: 1040
  • 92 Li Z, Zhao Y, Tian G, He Y, Song G, Meervelt LV, Van der Eycken EV. RSC Adv. 2016; 6: 103601
  • 93 Gordon CP, Young KA, Robertson MJ, Hill TA, McCluskey A. Tetrahedron 2011; 67: 554
  • 94 Santra S, Andreana PR. Angew. Chem. Int. Ed. 2011; 50: 9418
  • 95 Ilyin A, Kysil V, Krasavin M, Kurashvili I, Ivachtchenko AV. J. Org. Chem. 2006; 71: 9544
  • 96 Kumar A, Vachhani DD, Modha SG, Sharma SK, Parmar VS, Van der Eycken EV. Beilstein J. Org. Chem. 2013; 9: 2097
  • 97 Gunawan S, Keck K, Laetsch A, Hulme C. Mol. Diversity 2012; 16: 601
  • 98 Akritopoulou-Zanze I, Gracias V, Moore JD, Djuric SW. Tetrahedron Lett. 2004; 45: 3421
  • 99 Gracias V, Moore JD, Djuric SW. Tetrahedron Lett. 2004; 45: 417
  • 100 Vachhani DD, Galli M, Jacobs J, Van Meervelt L, Van der Eycken EV. Chem. Commun. 2013; 49: 7171
  • 101 Ribelin TP, Judd AS, Akritopoulou-Zanze I, Henry RF, Cross JL, Whittern DN, Djuric SW. Org. Lett. 2007; 9: 5119
  • 102 Akritopoulou-Zanze I, Whitehead A, Waters JE, Henry RF, Djuric SW. Org. Lett. 2007; 9: 1299
  • 103 Rasouli MA, Mahdavi M, Ranjbar PR, Saeedi M, Shafiee A, Foroumadi A. Tetrahedron Lett. 2012; 53: 7088
  • 104 Balalaie S, Shamakli M, Nikbakht A, Alavijeh NS, Rominger F, Rostamizadeh S, Bijanzadeh HR. Org. Biomol. Chem. 2017; 15: 5737
  • 105 Riva R, Banfi L, Basso A, Cerulli V, Guanti G, Pani M. J. Org. Chem. 2010; 75: 5134
  • 106 Gordillo-Cruz RE, Rentería-Gómez A, Islas-Jácome A, Cortes-García CJ, Díaz-Cervantes E, Robles J, Gámez-Montaño R. Org. Biomol. Chem. 2013; 11: 6470
  • 107 Rentería-Gómez A, Islas-Jácome A, Díaz-Cervantes E, Villaseñor-Granados T, Robles J, Gámez-Montaño R. Bioorg. Med. Chem. Lett. 2016; 26: 2333
  • 108 Mehta VP, Modha SG, Ruijter E, Van Hecke K, Van Meervelt L, Pannecouque C, Balzarini J, Orru RV. A, Van der Eycken E. J. Org. Chem. 2011; 76: 2828