Synthesis 2021; 53(06): 1061-1076
DOI: 10.1055/s-0040-1706146
short review

Alkylzirconocenes in Organic Synthesis: An Overview

Chao Yang
a   School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. of China
b   National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, P. R. of China
,
Chao Jiang
a   School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. of China
,
Xiangbing Qi
b   National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, P. R. of China
c   Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, P. R. of China
› Institutsangaben
This work was supported by the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2014CB849603), the National­ Natural Science Foundation of China (NSFC) (Grant No. 21772092) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.


Abstract

Organozirconium chemistry has found extensive applications in organic synthesis since its discovery in the last century. Alkyl­zirconocenes, which are easily generated by the hydrozirconation of alkenes with the Schwartz reagent, are widely utilized for carbon–carbon­ and carbon–heteroatom bond formation. This short review summarizes the progress to date on the applications alkylzirconocenes in organic synthesis.

1 Introduction

2 General Methods for Generating Alkylzirconocenes

3 Transformations of Alkylzirconocenes by Heteroatoms

4 Insertion of Unsaturated Groups into Alkylzirconocenes

5 Transmetalations

6 Cross-Coupling Reactions of Alkylzirconocenes

7 Photochemistry of Alkylzirconocenes

8 Bimetallic Reagents of Zirconium

9 Asymmetric Transformations

10 Applications of Alkylzirconocenes Generated from the Negishi Reagent

11 Conclusions and Outlook



Publikationsverlauf

Eingereicht: 04. November 2020

Angenommen nach Revision: 11. Januar 2021

Artikel online veröffentlicht:
11. Februar 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kautzner B, Wailes PC, Weigold H. J. Chem. Soc. D 1969; 1105a
  • 2 Hart DW, Schwartz J. J. Am. Chem. Soc. 1974; 96: 8115
  • 4 Berionni G, Kurouchi H, Eisenburger L, Mayr H. Chem. Eur. J. 2016; 22: 11196
  • 5 Corral-Bautista F, Klier L, Knochel P, Mayr H. Angew. Chem. Int. Ed. 2015; 54: 12497
  • 6 Wipf P, Nunes RL. Tetrahedron 2004; 60: 1269
  • 7 Wipf P, Jahn H. Tetrahedron 1996; 52: 12853
    • 8a Wipf P, Xu W, Takahashi H, Jahn H, Coish P. Pure Appl. Chem. 1997; 69: 639
    • 8b Marek H, Chechik-Lankin H. In Handbook of Functionalized Organometallics: Applications in Synthesis . Knochel P. Wiley-VCH; Weinheim: 2005: 503
    • 8c Song Z, Takahashi T. In Comprehensive Organic Synthesis II, 2nd ed., Vol. 8. Knochel P. Elsevier; Amsterdam: 2014: 838
    • 8d Pinheiro DL, de Castro PP, Amarante GW. Eur. J. Org. Chem. 2018; 4828
    • 8e Vargová D, Némethová I, Plevová K, Sebesta R. ACS Catal. 2019; 9: 3104
    • 8f Némethová I, Šebesta R. Synthesis 2021; 53: 447
    • 9a Annby U, Karlsson S, Gronowitz S, Hallberg A, Alvhäll J. Acta Chem. Scand. 1993; 47: 425
    • 9b Wipf P, Takahashi H, Zhuang N. Pure Appl. Chem. 1998; 70: 1077
  • 10 Tucker CE, Knochel P. J. Am. Chem. Soc. 1991; 113: 9888
    • 11a Marek I, Chinkov N, Levin A. Synlett 2006; 501
    • 11b Bruffaerts J, Pierrot D, Marek I. Org. Biomol. Chem. 2016; 14: 10325
  • 12 Negishi EI, Takahashi T. Acc. Chem. Res. 1994; 27: 124
  • 13 Xi Z, Li Z. Construction of Carbocycles via Zirconacycles and Titanacycles. In Metallocenes in Regio- and Stereoselective Synthesis. Takahashi T. Topics in Organometallic Chemistry 08; Springer; Berlin: 2005: 27
    • 14a Barluenga J, Rodríguez F, Álvarez-Rodrigo L, Fañanás FJ. Chem. Soc. Rev. 2005; 34: 762
    • 14b Chen C, Xi C. Chin. Sci. Bull. 2010; 55: 3235
    • 14c Yan X, Xi C. Coord. Chem. Rev. 2017; 350: 275
    • 15a Meijboom R, Moss JR, Hutton AT, Makaluza TA, Mapolie SF, Waggie F, Domingo MR. J. Organomet. Chem. 2004; 689: 1876
    • 15b Ahari M, Joosten A, Vasse J.-L, Szymoniak J. Synthesis 2008; 61
    • 15c Ahari M. h, Perez A, Menant C, Vasse J.-L, Szymoniak J. Org. Lett. 2008; 10: 2473
    • 15d Nonnenmacher J, Grellepois F, Portella C. Eur. J. Org. Chem. 2009; 3726
    • 15e Delaye P.-O, Ahari M, Vasse J.-L, Szymoniak J. Tetrahedron: Asymmetry 2010; 21: 2505
    • 15f Delaye P.-O, Pradhan TK, Lambert É, Vasse J.-L, Szymoniak J. Eur. J. Org. Chem. 2010; 3395
    • 15g Delaye P.-O, Vasse J.-L, Szymoniak J. Org. Biomol. Chem. 2010; 8: 3635
    • 15h Pradhan TK, Krishnan KS, Vasse J.-L, Szymoniak J. Org. Lett. 2011; 13: 1793
    • 15i Hajri M, Blondelle C, Martinez A, Vasse J.-L, Szymoniak J. Tetrahedron Lett. 2013; 54: 1029
  • 16 Kuninobu Y, Ureshino T, Yamamoto S.-i, Takai K. Chem. Commun. 2010; 46: 5310
    • 17a Blackburn TF, Labinger JA, Schwartz J. Tetrahedron Lett. 1975; 16: 3041
    • 17b Gibson T. Tetrahedron Lett. 1982; 23: 157
  • 18 Nagashima T, Curran DP. Synlett 1996; 330
  • 19 Cole TE, Rodewald S, Watson CL. Tetrahedron Lett. 1992; 33: 5295
  • 20 Zheng B, Srebnik M. J. Org. Chem. 1995; 60: 1912
  • 21 Strom AE, Hartwig JF. J. Org. Chem. 2013; 78: 8909
  • 22 Pritchett BP, Donckele EJ, Stoltz BM. Angew. Chem. Int. Ed. 2017; 56: 12624
  • 23 Bertelo CA, Schwartz J. J. Am. Chem. Soc. 1975; 97: 228
    • 24a Hanzawa Y, Narita K, Taguchi T. Tetrahedron Lett. 2000; 41: 109
    • 24b Hanzawa Y, Narita K, Yabe M, Taguchi T. Tetrahedron 2002; 58: 10429
    • 24c Kang SK, Yoon SK. J. Chem. Soc., Perkin Trans. 1 2002; 4: 459
    • 24d Hanzawa Y, Taguchi T. J. Synth. Org. Chem., Jpn. 2004; 62: 314
  • 25 Negishi EI, Swanson DR, Miller SR. Tetrahedron Lett. 1988; 29: 1631
  • 26 Liu Y, Shen B, Kotora M, Nakajima K, Takahashi T. J. Org. Chem. 2002; 67: 7019
  • 27 Negishi EI, Akiyoshi K, O’Connor B, Takagi K, Wu G. J. Am. Chem. Soc. 1989; 111: 3089
  • 28 Kasatkin A, Whitby RJ. J. Am. Chem. Soc. 1999; 121: 7039
  • 29 Maeta H, Hashimoto T, Hasegawa T, Suzuki K. Tetrahedron Lett. 1992; 33: 5965
  • 30 Yamanoi S, Imai T, Matsumoto T, Suzuki K. Tetrahedron Lett. 1997; 38: 3031
    • 31a Yamanoi S, Ohrui H, Seki K, Matsumoto T, Suzuki K. Tetrahedron Lett. 1999; 40: 8407
    • 31b Yamanoi S, Seki K, Matsumoto T, Suzuki K. J. Organomet. Chem. 2001; 624: 143
  • 32 Carr DB, Schwartz J. J. Am. Chem. Soc. 1977; 99: 638
  • 33 Wang Q, Fan H, Xi Z. Organometallics 2007; 26: 775
  • 34 Kosugi M, Tanji T, Tanaka Y, Yoshida A, Fugami K, Kameyama M, Migita T. J. Organomet. Chem. 1996; 508: 255
  • 35 Wipf P, Xu W. Synlett 1992; 718
  • 36 Wipf P, Xu W, Smitrovich JH, Lehmann R, Venanzi LM. Tetrahedron 1994; 50: 1935
  • 37 Venanzi LM, Lehmann R, Keil R, Lipshutz BH. Tetrahedron Lett. 1992; 33: 5857
  • 38 Indukuri K, Riant O. Adv. Synth. Catal. 2017; 359: 2425
    • 39a Zucchini U, Albizzati E, Giannini U. J. Organomet. Chem. 1971; 26: 357
    • 39b Ballard D, Van Lienden P. Makromol. Chem. 1972; 154: 177
    • 39c Rausch MD, Boon WH, Alt HG. Ann. N. Y. Acad. Sci. 1977; 295: 103
  • 40 Hudson A, Lappert MF, Pichon R. J. Chem. Soc., Chem. Commun. 1983; 7: 374
  • 41 Alpers D, Hoffmann F, Brasholz M. Synlett 2017; 28: 919
  • 42 Gao Y, Yang C, Bai S, Liu X, Wu Q, Wang J, Jiang C, Qi X. Chem 2020; 6: 675
  • 43 Zheng B, Srebnik M. Tetrahedron Lett. 1993; 34: 4133
    • 44a Zheng B, Srebnik M. J. Organomet. Chem. 1994; 474: 49
    • 44b Zheng B, Srebnik M. Tetrahedron Lett. 1994; 35: 1145
    • 44c Zheng B, Srebnik M. Tetrahedron Lett. 1994; 35: 6247
    • 44d Pereira S, Srebnik M. Tetrahedron Lett. 1995; 36: 1805
    • 44e Zheng B, Srebnik M. Tetrahedron Lett. 1995; 36: 5665
    • 44f Zheng B, Srebnik M. J. Org. Chem. 1995; 60: 486
  • 45 Yang C, Gao Y, Bai S, Jiang C, Qi X. J. Am. Chem. Soc. 2020; 142: 11506
  • 46 Tucker CE, Greve B, Klein W, Knochel P. Organometallics 1994; 13: 94
  • 47 Hartner FW. Jr, Schwartz J. J. Am. Chem. Soc. 1981; 103: 4979
  • 48 Clift SM, Schwartz J. J. Organomet. Chem. 1985; 285: C5
    • 49a Rideau E, Fletcher SP. Beilstein J. Org. Chem. 2015; 11: 2435
    • 49b You H, Rideau E, Sidera M, Fletcher SP. Nature 2015; 517: 351
    • 49c Rideau E, You H, Sidera M, Claridge TD, Fletcher SP. J. Am. Chem. Soc. 2017; 139: 5614
    • 49d Jacques R, Pullin RD, Fletcher SP. Nat. Commun. 2019; 10: 1
    • 50a Maksymowicz RM, Roth PM, Fletcher SP. Nat. Chem. 2012; 4: 649
    • 50b Maksymowicz RM, Roth PM, Thompson AL, Fletcher SP. Chem. Commun. 2013; 49: 4211
    • 50c Maksymowicz RM, Sidera M, Roth PM, Fletcher SP. Synthesis 2013; 45: 2662
    • 50d Sidera M, Roth PM, Maksymowicz RM, Fletcher SP. Angew. Chem. Int. Ed. 2013; 52: 7995
    • 50e Maciver EE, Maksymowicz RM, Wilkinson N, Roth PM, Fletcher SP. Org. Lett. 2014; 16: 3288
    • 50f Roth PM, Sidera M, Maksymowicz RM, Fletcher SP. Nat. Protoc. 2014; 9: 104
    • 50g Caprioglio D, Fletcher SP. Chem. Commun. 2015; 51: 14866
    • 50h Mola L, Sidera M, Fletcher SP. Aust. J. Chem. 2015; 68: 401
    • 50i Rideau E, Maesing F, Fletcher SP. Synthesis 2015; 47: 2217
    • 50j Roth PM, Fletcher SP. Org. Lett. 2015; 17: 912
    • 50k Garrec K, Fletcher SP. Org. Lett. 2016; 18: 3814
    • 50l Ardkhean R, Roth PM, Maksymowicz RM, Curran A, Peng Q, Paton RS, Fletcher SP. ACS Catal. 2017; 7: 6729
    • 50m Gao Z, Fletcher SP. Chem. Sci. 2017; 8: 641
    • 50n Ardkhean R, Mortimore M, Paton RS, Fletcher SP. Chem. Sci. 2018; 9: 2628
    • 50o Gao Z, Fletcher SP. Chem. Commun. 2018; 54: 3601
    • 50p Wang JY. J, Palacin T, Fletcher SP. Org. Lett. 2018; 21: 378
    • 50q Brethomé AV, Paton RS, Fletcher SP. ACS Catal. 2019; 9: 7179
    • 50r Wang JY. J, Fletcher SP. Org. Lett. 2020; 22: 4103
  • 51 Negishi E.-i, Cederbaum FE, Takahashi T. Tetrahedron Lett. 1986; 27: 2829
  • 52 Maye JP, Negishi E.-i. Tetrahedron Lett. 1993; 34: 3359
  • 53 Negishi E, Holmes SJ, Tour JM, Miller JA, Cederbaum FE, Swanson DR, Takahashi T. J. Am. Chem. Soc. 1989; 111: 3336
  • 54 Fillery SF, Gordon GJ, Luker T, Whitby RJ. Pure Appl. Chem. 1997; 69: 633
  • 55 Liu Y, Shen B, Kotora M, Takahashi T. Angew. Chem. Int. Ed. 1999; 38: 949
  • 56 Chinkov N, Levin A, Marek I. Angew. Chem. 2006; 118: 479
  • 57 Masarwa A, Didier D, Zabrodski T, Schinkel M, Ackermann L, Marek I. Nature 2014; 505: 199