Synthesis 2021; 53(15): 2559-2569
DOI: 10.1055/s-0040-1706030
short review

Recent Advances in the Synthesis of 2,2′-Bipyridines and Their Derivatives

Aleksandr E. Rubtsov
a  Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russian Federation
,
b  Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
› Author Affiliations
This work was supported by the Russian Science Foundation (Grant No. 18-73-10156). We would like to thank Perm State University (Russian Federation) and Loughborough University for additional support.


Abstract

The sustained interest in the synthesis of new analogues of 2,2′-bipyridines is supported by the importance of compounds featuring bipyridine core in diverse areas of chemical, biomedical and materials research, which is relayed into the development of new approaches and the expansion of existing synthetic methods. This short review covers advances in the synthesis of 2,2′-bipyridines, including both the synthesis of compounds with a given substitution pattern and the development of new methods for assembling the bipyridine core. Special attention is directed toward the use of pyridine N-oxides and metal-free protocols to facilitate the formation of bipyridines. This short review focuses primarily on reports published in the last 5–6 years.

1 Introduction

2 Ullmann-Type Homocoupling Reactions

3 Cross-Coupling Reactions in the Synthesis of Bipyridines

4 Coupling Reactions Employing Pyridine N-Oxides

5 Other Methods for the Synthesis of 2,2′-Bipyridines

6 Conclusions and Outlook



Publication History

Received: 04 January 2021

Accepted after revision: 26 February 2021

Publication Date:
11 March 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Antkowiak WZ, Gessner WP. Tetrahedron Lett. 1979; 1931
    • 1b Chen D, Zhao Q, Liu W. J. Ind. Microbiol. Biotechnol. 2019; 46: 459
  • 2 Kaes C, Katz A, Hosseini MW. Chem. Rev. 2000; 100: 3553
    • 3a Chelucci G, Thummel RP. Chem. Rev. 2002; 102: 3129
    • 3b Fletcher NC. J. Chem. Soc., Perkin Trans. 1 2002; 1831
    • 3c Malkov AV, Kocovsky P. Curr. Org. Chem. 2003; 7: 1737
    • 3d Koukal P, Ulč J, Nečas D, Kotora M. Pyridine N-Oxides and Derivatives Thereof in Organocatalysis . In Heterocyclic N-Oxides . Larionov O. Springer; Cham (Switzerland): 2017
    • 3e Wrzeszcz Z, Siedlecka R. Molecules 2020; 25: 330
    • 4a Hapke M, Brandt L, Lutzen A. Chem. Soc. Rev. 2008; 37: 2782
    • 4b Constable EC, Housecroft CE. Molecules 2019; 24: 3951
    • 5a Wibaut JP, Overhoff J. Recl. Trav. Chim. Pays-Bas 1928; 47: 761
    • 5b Klivar J, Samal M, Jancarik A, Vacek J, Bednarova L, Budesinsky M, Fiedler P, Stary I, Stara IG. Eur. J. Org. Chem. 2018; 5164
  • 6 Shaffer DW, Xie Y, Szalda DJ, Concepcion JJ. Inorg. Chem. 2016; 55: 12024
  • 7 Yao W, Gong W.-J, Li H.-X, Li F.-L, Gao J, Lang J.-P. Dalton Trans. 2014; 43: 15752
  • 8 Yurino T, Ueda Y, Shimizu Y, Tanaka S, Nishiyama H, Tsurugi H, Sato K, Mashima K. Angew. Chem. Int. Ed. 2015; 54: 14437
  • 9 Wang Z.-J, Wang X, Lv J.-J, Feng J.-J, Xu X, Wang A.-J, Liang Z. New J. Chem. 2017; 41: 3894
  • 10 Schultz DM, Sawicki JW, Yoon TP. Beilstein J. Org. Chem. 2015; 11: 61
  • 11 Lakshmidevi J, Appa RM, Naidu BR, Prasad SS, Sarma LS, Venkateswarlu K. Chem. Commun. 2018; 54: 12333
  • 12 Sengupta D, Pandey MK, Mondal D, Radhakrishna L, Balakrishna MS. Eur. J. Inorg. Chem. 2018; 3374
    • 13a Buldt LA, Prescimone A, Neuburger M, Wenger OS. Eur. J. Inorg. Chem. 2015; 4666
    • 13b Qu F, Park S, Martinez K, Gray JL, Thowfeik FS, Lundeen JA, Kuhn AE, Charboneau DJ, Gerlach DL, Lockart MM, Law JA, Jernigan KL, Chambers N, Zeller M, Piro NA, Kassel WS, Schmehl RH, Paul JJ, Merino EJ, Kim Y, Papish ET. Inorg. Chem. 2017; 56: 7519
    • 13c Gruening WR, Siddiqi G, Safonova OV, Coperet C. Adv. Synth. Catal. 2014; 356: 673
    • 13d Kennedy SH, Gasonoo M, Klumpp DA. Beilstein J. Org. Chem. 2019; 15: 1515
    • 13e Xu B, Gartman JA, Tambar UK. Tetrahedron 2017; 73: 4150
    • 13f Oelkers B. Eur. J. Inorg. Chem. 2014; 5838
    • 13g Turnbull WL, Luyt LG. Chem. Eur. J. 2018; 24: 14539
    • 13h Kremer C, Schnakenburg G, Lutzen A. Beilstein J. Org. Chem. 2014; 10: 814
    • 13i Lennox JC, Dempsey JL. J. Phys. Chem. B 2017; 121: 10530
    • 13j Li H, Oppenheimer J, Smith MR, Maleczka RE. Tetrahedron Lett. 2016; 57: 2231
    • 13k Beynek N, Tan N, Beynek H. Asian J. Chem. 2015; 27: 4141
    • 13l Stobe C, Pyka I, Linke A, Muller S, Schnakenburg G, Waldvogel SR, Lutzen A. ChemPlusChem 2017; 82: 758
    • 13m Bednářová E, Nečas D, Císařová I, Dušek M, Lamaty F, Kotora M. Monatsh. Chem. 2018; 150: 29
  • 14 Scherrer D, Schilling M, Luber S, Fox T, Spingler B, Alberto R, Richmond CJ. Dalton Trans. 2016; 45: 19361
  • 15 Lewis JE. M, Bordoli RJ, Denis M, Fletcher CJ, Galli M, Neal EA, Rochette EM, Goldup SM. Chem. Sci. 2016; 7: 3154
  • 16 Bednářová E, Dračínský M, Malatinec Š, Císařová I, Lamaty F, Kotora M. Adv. Synth. Catal. 2018; 360: 2869
  • 17 Liao L.-Y, Kong X.-R, Duan X.-F. J. Org. Chem. 2014; 79: 777
  • 18 Rahil R, Sengmany S, Le Gall E, Léonel E. Synthesis 2018; 50: 146
  • 19 Deshayes K, Broene RD, Chao I, Knobler CB, Diederich F. J. Org. Chem. 1991; 56: 6787
  • 20 Du F, Zhou Q, Liu D, Fang T, Shi Y, Du Y, Chen G. Synlett 2018; 29: 779
  • 21 Markovic T, Rocke BN, Blakemore DC, Mascitti V, Willis MC. Chem. Sci. 2017; 8: 4437
  • 22 Markovic T, Murray PR. D, Rocke BN, Shavnya A, Blakemore DC, Willis MC. J. Am. Chem. Soc. 2018; 140: 15916
  • 23 Yamamoto Y, Azuma Y, Mitoh H. Synthesis 1986; 564
    • 24a Pinyou P, Ruff A, Poller S, Ma S, Ludwig R, Schuhmann W. Chem. Eur. J. 2016; 22: 5319
    • 24b Dhondge AP, Chen J.-Y, Lin T, Yen F.-M, Li K.-W, Hsieh H.-C, Kuo M.-Y. Org. Lett. 2018; 20: 40
    • 25a Grandl M, Sun Y, Pammer F. Chem. Eur. J. 2016; 22: 3976
    • 25b Xu C, Guenet A, Kyritsakas N, Planeix J.-M, Hosseini MW. Chem. Commun. 2015; 51: 14785
    • 25c Li X, Tong X, Yin Y, Yan H, Lu C, Huang W, Zhao Q. Chem. Sci. 2017; 8: 5930
    • 25d Chen F, Jiang Y, Sui Y, Zhang J, Tian H, Han Y, Deng Y, Hu W, Geng Y. Macromolecules 2018; 51: 8652
  • 26 Isla H, Saleh N, Ou-Yang J.-K, Dhbaibi K, Jean M, Dziurka M, Favereau L, Vanthuyne N, Toupet L, Jamoussi B, Srebro-Hooper M, Crassous J. J. Org. Chem. 2019; 84: 5383
  • 27 Liu Y, Bergès J, Zaid Y, Chahdi FO, Van Der Lee A, Harakat D, Clot E, Jaroschik F, Taillefer M. J. Org. Chem. 2019; 84: 4413
  • 28 Ogawa A, Oohora K, Gu W, Hayashi T. Chem. Commun. 2019; 55: 493
  • 29 Li X, Li D, Li Y, Chang H, Gao W, Wei W. RSC Adv. 2016; 6: 86998
  • 30 Xie WW, Liu Y, Yuan R, Zhao D, Yu TZ, Zhang J, Da CS. Adv. Synth. Catal. 2016; 358: 994
  • 31 Yang YD, Lan JB, You JS. Chem. Rev. 2017; 117: 8787
  • 32 Robo MT, Prinsell MR, Weix DJ. J. Org. Chem. 2014; 79: 10624
  • 33 Nagaoka M, Kawashima T, Suzuki H, Takao T. Organometallics 2016; 35: 2348
  • 34 Yamada S, Kaneda T, Steib P, Murakami K, Itami K. Angew. Chem. Int. Ed. 2019; 58: 8341
    • 35a Joule J, Mills K. Heterocyclic Chemistry, 5th ed. John Wiley & Sons; Chichester: 2010
    • 35b Coperet C, Adolfsson H, Khuong TA. V, Yudin AK, Sharpless KB. J. Org. Chem. 1998; 63: 1740
    • 36a Kim KD, Lee JH. Org. Lett. 2018; 20: 7712
    • 36b Konev MO, Cardinale L, Jacobi von Wangelin A. Org. Lett. 2020; 22: 1316
    • 36c Jeong J, Lee D, Chang S. Chem. Commun. 2015; 51: 7035
    • 36d Xu P, Xu HC. Synlett 2019; 30: 1219
    • 36e Fukazawa Y, Rubtsov AE, Malkov AV. Eur. J. Org. Chem. 2020; 3317
  • 37 Stephens DE, Lakey-Beitia J, Burch JE, Arman HD, Larionov OV. Chem. Commun. 2016; 52: 9945
    • 38a Kovalev IS, Rusinov VL, Chupakhin ON. Chem. Heterocycl. Compd. 2009; 45: 176
    • 38b Tagawa Y, Hama K, Goto Y, Hamana M. Heterocycles 1992; 34: 2243
  • 39 Inamoto K, Araki Y, Kikkawa S, Yonemoto M, Tanaka Y, Kondo Y. Org. Biomol. Chem. 2013; 11: 4438
  • 40 Wang H, Pei Y, Bai J, Zhang J, Wu Y, Cui X. RSC Adv. 2014; 4: 26244
  • 41 Fukazawa Y, Vaganov VY, Shipilovskikh SA, Rubtsov AE, Malkov AV. Org. Lett. 2019; 21: 4798
  • 42 Jha AK, Jain N. Eur. J. Org. Chem. 2017; 4765
  • 43 Peng X, Huang P, Jiang L, Zhu J, Liu L. Tetrahedron Lett. 2016; 57: 5223
    • 44a Denmark SE, Fan Y. Tetrahedron: Asymmetry 2006; 17: 687
    • 44b Denmark SE, Fan Y, Eastgate MD. J. Org. Chem. 2005; 70: 5235
  • 45 Ulč J, Nečas D, Koukal P, Havlíček V, Tošner Z, Hybelbauerová S, Kotora M. Eur. J. Org. Chem. 2018; 5109
    • 46a O’Hora PS, Incerti-Pradillos CA, Kabeshov MA, Shipilovskikh SA, Rubtsov AE, Elsegood MR. J, Malkov AV. Chem. Eur. J. 2015; 21: 4551
    • 46b Incerti-Pradillos CA, Kabeshov MA, O’Hora PS, Shipilovskikh SA, Rubtsov AE, Drobkova VA, Balandina SY, Malkov AV. Chem. Eur. J. 2016; 22: 14390
    • 46c Vaganov VY, Fukazawa Y, Kondratyev NS, Shipilovskikh SA, Wheeler SE, Rubtsov AE, Malkov AV. Adv. Synth. Catal. 2020; 362: 5467
  • 47 Campeau LC, Schipper DJ, Fagnou K. J. Am. Chem. Soc. 2008; 130: 3266
    • 48a Vasta JD, Raines RT. Bioorg. Med. Chem. 2015; 23: 3081
    • 48b Duric S, Tzschucke CC. Org. Lett. 2011; 13: 2310
    • 48c Zucker SP, Wossidlo F, Weber M, Lentz D, Tzschucke CC. J. Org. Chem. 2017; 82: 5616
  • 49 Welin ER, Ngamnithiporn A, Klatte M, Lapointe G, Pototschnig GM, McDermott MS. J, Conklin D, Gilmore CD, Tadross PM, Haley CK, Negoro K, Glibstrup E, Grünanger CU, Allan KM, Virgil SC, Slamon DJ, Stoltz BM. Science 2019; 363: 270
  • 50 Varela JA, Castedo L, Saa C. J. Am. Chem. Soc. 1998; 120: 12147
    • 51a Okamoto S. Heterocycles 2012; 85: 1579
    • 51b Okamoto S, Sugiyama Y. Synlett 2013; 24: 1044
    • 52a Hrdina R, Valterova I, Hodacova J, Cisarova I, Kotora M. Adv. Synth. Catal. 2007; 349: 822
    • 52b Hrdina R, Dracinsky M, Valterova I, Hodacova J, Cisarova I, Kotora M. Adv. Synth. Catal. 2008; 350: 1449
    • 52c Kadlcikova A, Hrdina R, Valterova I, Kotora M. Adv. Synth. Catal. 2009; 351: 1279
  • 53 Wang C.-S, Sun Q, García F, Wang C, Yoshikai N. Angew. Chem. Int. Ed. 2021; 60: in press DOI: 10.1002/anie.202017220.
    • 54a Galenko AV, Shakirova FM, Galenko EE, Novikov MS, Khlebnikov AF. J. Org. Chem. 2017; 82: 5367
    • 54b Galenko EE, Novikov MS, Shakirova FM, Shakirova JR, Kornyakov IV, Bodunov VA, Khlebnikov AF. J. Org. Chem. 2019; 84: 3524
  • 55 Feng RK, Ning HQ, Su H, Gao Y, Yin HT, Wang YD, Yang Z, Qi CZ. J. Org. Chem. 2017; 82: 10408
  • 56 Zeimyte S, Stoncius S. Tetrahedron 2021; 78: 131831
  • 57 Kokina TE, Rakhmanova MI, Shekhovtsov NA, Glinskaya LA, Komarov VY, Agafontsev AM, Baranov AY, Plyusnin PE, Sheludyakova LA, Tkachev AV, Bushuev MB. Dalton Trans. 2020; 49: 7552
  • 58 Hilton MC, Zhang X, Boyle BT, Alegre-Requena JV, Paton RS, McNally A. Science 2018; 362: 799
  • 59 Boyle BT, Hilton MC, McNally A. J. Am. Chem. Soc. 2019; 141: 15441