Synthesis 2021; 53(08): 1423-1433
DOI: 10.1055/s-0040-1706017
short review

Hydroxylamines as One-Atom Nitrogen Sources for Metal-Catalyzed Cycloadditions

Jingxun Yu
,
Xinjun Luan
We thank the National Science Foundation of China (21925108), the Shaanxi Key Science and Technology Innovation Team Project (2017KCT-37), the Education Department of Shaanxi Province (18JS108), and the Key Laboratory Project of Xi’an (201805058ZD9CG42) for financial support.


Abstract

Transition-metal-catalyzed C–N bond formation is one of the most important pathways to synthesize N-heterocycles. Hydroxylamines can be transformed into a nucleophilic reagent to react with a carbon cation or coordinate with a transition metal; it can also become an electrophilic nitrogen source to react with arenes, alkenes, and alkynes. In this short review, the progress made on transition-metal-catalyzed cycloadditions with hydroxylamines as a nitrogen source is summarized.

1 Introduction

2 Cycloaddition To Form Aziridine Derivatives

2.1 Intramolecular Cycloaddition To Form Aziridine Derivatives

2.2 Intermolecular Cycloaddition To Form Aziridine Derivatives

3 Cycloaddition To Form Indole Derivatives

4 Cycloaddition To Form Other N-Heterocycles

4.1 Aza-Heck-Type Amination Reactions

4.2 Nitrene Insertion Amination Reactions

4.3 Intramolecular Nucleophilic and Electrophilic Amination Reactions

5 Conclusion and Outlook



Publication History

Received: 25 November 2020

Accepted after revision: 01 January 2021

Publication Date:
25 January 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews, see:
    • 1a Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
    • 1b Ismail FM. D, Levitsky DO, Dembitsky VM. Eur. J. Med. Chem. 2009; 44: 3373
    • 1c Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
    • 1d Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 1e Van Order RB, Lindwall HG. Chem. Rev. 1942; 30: 69

      For reviews see:
    • 2a Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
    • 2b Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
  • 3 For a review on the Buchwald–Hartwig coupling, see: Heravi MM, Kheilkordi Z, Zadsirjan V, Heydari M, Malmir M. J. Organomet. Chem. 2018; 861: 17

    • For reviews, see:
    • 4a Erdik E. Chem. Soc. Rev. 2014; 43: 901
    • 4b Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 4c Timsina YN, Gupton BF, Ellis KC. ACS Catal. 2018; 8: 5732
  • 5 Wentrup C. Angew. Chem. Int. Ed. 2018; 57: 11508
    • 6a Dequirez G, Pons V, Dauban P. Angew. Chem. Int. Ed. 2012; 51: 7384
    • 6b Svastits EW, Dawson JH, Breslow R, Gellman SH. J. Am. Chem. Soc. 1985; 107: 6427
    • 6c Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 6d Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 6e Gephart RT. III, Warren TH. Organometallics 2012; 31: 7728
    • 6f Alderson JM, Corbin JR, Schomaker JM. Acc. Chem. Res. 2017; 50: 2147
    • 6g Singh R, Mukherjee A. ACS Catal. 2019; 9: 3604
    • 7a Aziridines and Epoxides in Organic Synthesis. Yudin A. Wiley-VCH; Weinheim: 2006
    • 7b McCoull W, Davis FA. Synthesis 2000; 1347
    • 7c Hu XE. Tetrahedron 2004; 60: 2701
    • 7d Lu P. Tetrahedron 2010; 66: 2549
    • 7e Stankovic S, D’hooghe M, Catak S, Eum H, Waroquier M, Van Speybroeck V, De Kimpe N, Ha H.-J. Chem. Soc. Rev. 2012; 41: 643
  • 8 Lebel H, Huard K, Lectard S. J. Am. Chem. Soc. 2005; 127: 14198
  • 9 Lebel H, Leogane O, Huard K, Lectard S. Pure Appl. Chem. 2006; 78: 363
  • 10 Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
  • 11 Liu RM, Herron SR, Fleming SA. J. Org. Chem. 2007; 72: 5587
    • 12a Evans DA, Faul MM, Bilodeau MT. J. Am. Chem. Soc. 1994; 116: 2742
    • 12b Li Z, Quan RW, Jacobsen EN. J. Am. Chem. Soc. 1995; 117: 5889
  • 13 Lebel H, Lectard S, Parmentier M. Org. Lett. 2007; 9: 4797

    • For examples, see:
    • 14a Barani M, Fioravanti S, Pellacani L, Tardella PA. Tetrahedron 1994; 50: 11235
    • 14b Fioravanti S, Luna G, Pellacani L, Tardella PA. Tetrahedron 1997; 53: 4779
  • 15 Wang H, Yang JC, Buchwald SL. J. Am. Chem. Soc. 2017; 139: 8428
  • 16 Jat JL, Paudyal MP, Gao HY, Xu QL, Yousufuddin M, Devarajan D, Ess DH, Kürti L, Falck JR. Science 2014; 343: 61
  • 17 Ma ZW, Zhou Z, Kürti L. Angew. Chem. Int. Ed. 2017; 56: 9886
  • 18 Sabir S, Pandey CB, Yadav AK, Tiwari B, Jat JL. J. Org. Chem. 2018; 83: 12255
  • 19 Legnani L, Prina-Cerai G, Delcaillau T, Willems S, Morandi B. Science 2018; 362: 434 ; corrigendum: Science 2019, 365: eaay8140
  • 20 Ichikawa J, Wada Y, Okauchi T, Minami T. Chem. Commun. 1997; 1537
  • 21 Fan LX, Hao JM, Yu JX, Ma XJ, Liu JJ, Luan XJ. J. Am. Chem. Soc. 2020; 142: 6698
  • 22 Hazelden IR, Ma XF, Langer T, Bower JF. Angew. Chem. Int. Ed. 2016; 55: 11198
  • 23 Xu F, Shuler SA, Watson DA. Angew. Chem. Int. Ed. 2018; 57: 12081
    • 24a Robinson RP, Laird ER, Donahue KM, Lopresti-Morrow LL, Mitchell PG, Reese MR, Reeves LM, Rouch AI, Stam EJ, Yocum SA. Bioorg. Med. Chem. Lett. 2001; 11: 1211
    • 24b Reichard GA, Stengone C, Paliwal S, Mergelsberg I, Majmundar S, Wang C, Tiberi R, McPhail AT, Piwinski JJ, Shih NY. Org. Lett. 2003; 5: 4249
    • 24c Robinson DM, Curran MP, Lyseng-Williamson KA. Drugs 2007; 67: 1359
    • 24d Shuler SA, Yin G, Krause SB, Vesper CM, Watson DA. J. Am. Chem. Soc. 2016; 138: 13830
  • 25 Beller M, Riermeier TH. Eur. J. Inorg. Chem. 1998; 29
  • 26 Hazelden IR, Carmona RC, Langer T, Pringle PG, Bower JF. Angew. Chem. Int. Ed. 2018; 57: 5124
  • 27 Ma XF, Hazelden IR, Langer T, Munday RH, Bower JF. J. Am. Chem. Soc. 2019; 141: 3356
    • 28a McDonald RI, White PB, Weinstein AB, Tam CP, Stahl SS. Org. Lett. 2011; 13: 2830
    • 28b Yang G, Shen C, Zhang W. Angew. Chem. Int. Ed. 2012; 51: 9141
    • 28c Bao X, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 1995
    • 28d Kou X, Shao Q, Ye C, Yang G, Zhang W. J. Am. Chem. Soc. 2018; 140: 7587
    • 28e Sen A, Takenaka K, Sasai H. Org. Lett. 2018; 20: 6827
  • 29 Paudyal MP, Adebesin AM, Burt SR, Ess DH, Ma ZW, Kurit L, Falck JR. Science 2016; 353: 1144
  • 30 Munnuri S, Adebesin AM, Paudyal MP, Yousufuddin M, Dalipe A, Falck JR. J. Am. Chem. Soc. 2017; 139: 18288
  • 31 Li YL, Jia CQ, Li H, Xu LH, Wang LH, Cui XL. Org. Lett. 2018; 20: 4930
    • 32a Barot KP, Nikolova S, Ivanov I, Ghate MD. Mini-Rev. Med. Chem. 2013; 13: 1421
    • 32b Li YF, Wang GF, He PL, Huang WG, Zhu FH, Gao HY, Tang W, Luo Y, Feng CL, Shi LP, Ren YD, Lu W, Zuo JP. J. Med. Chem. 2006; 49: 4790
    • 32c Garuti L, Roberti M, Gentilomi G. Farmaco 2000; 55: 35
    • 32d Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, Bontcheva-Diaz VD, Cox BF, DeWeese TL, Dillehay LE, Ferguson DC, Ghoreishi-Haack NS, Grimm DR, Guan R, Han EK, Holley-Shanks R, Hristov B, Idler KB, Jarvis K, Johnson EF, Kleinberg LE, Klinghofer V, Lasko LM, Liu X, Marsh KC, McGonigal TP, Meulbroek JA, Olson AM, Palma JP, Rodriguez LE, Shi Y, Stavropoulos JA, Tsurutani AC, Zhu GD, Rosenberg SH, Giranda VL, Frost D. J. Clin. Cancer Res. 2007; 13: 2728
    • 33a Qi Z, Yu S, Li X. Org. Lett. 2016; 18: 700
    • 33b Zhou B, Du J, Yang Y, Feng H, Li Y. Org. Lett. 2014; 16: 592
    • 33c Xue Y, Fan Z, Jiang X, Wu K, Wang M, Ding C, Yao Q, Zhang A. Eur. J. Org. Chem. 2014; 2014: 7481