Synthesis 2021; 53(06): 1046-1060
DOI: 10.1055/s-0040-1705996
short review

Gold Catalysis and Furans: A Powerful Match for Synthetic Connections

Stefano Nejrotti
,
Cristina Prandi
We thank the Italian Ministery of Research, the Cassa di Risparmio of Turin and Huvepharma srl for funding.


Abstract

This review summarizes the advances made on the synthesis and functionalization of furans via gold catalysis during the period between 2016 and 2020. A separate section is dedicated to the tandem gold-catalyzed synthesis and functionalization of furans.

1 Introduction

2 Gold-Catalyzed Synthesis of Furans

2.1 Cycloisomerizations of Alkynyl and Cumulenyl Alcohols

2.2 Cycloisomerizations of Alkynyl and Allenyl Ketones

2.3 Reactions with External Oxidants

2.4 Miscellaneous

3 Gold-Catalyzed Functionalization of Furans

3.1 Cycloadditions

3.2 Furan Ring Decorations

3.3 Reactions Involving Furan Ring Opening

4 Gold-Catalyzed Tandem Synthesis and Functionalization of Furans­

4.1 Cycloisomerizations Followed by Gold-Catalyzed Cycloaddition

4.2 Cycloisomerizations to a Gold 1,3- or 1,4-Dipole and Intermolecular Annulation

4.3 Cycloisomerizations to a Gold Carbene and Intermolecular Trapping

5 Conclusion



Publikationsverlauf

Eingereicht: 05. Oktober 2020

Angenommen nach Revision: 05. November 2020

Artikel online veröffentlicht:
21. Dezember 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For the first report, see:
    • 1a Hashmi AS. K, Frost TM, Bats J. J. Am. Chem. Soc. 2000; 122: 11553

    • For selected mechanistic studies, see:
    • 1b Hashmi AS. K, Rudolph M, Weyrauch JP, Wölfle M, Frey W, Bats JW. Angew. Chem. Int. Ed. 2005; 44: 2798
    • 1c Echavarren AM, Méndez M, Muñoz MP, Nevado C, Martín-Matute B, Nieto-Oberhuber C, Cárdenas DJ. Pure Appl. Chem. 2004; 76: 453

    • For selected examples of synthesis, see:
    • 1d Hashmi AS. K, Rudolph M, Siehl HU, Tanaka M, Bats JW, Frey W. Chem. Eur. J. 2008; 14: 3703
    • 1e Hashmi AS. K, Weyrauch JP, Kurpejović E, Frost TM, Miehlich B, Frey W, Bats JW. Chem. Eur. J. 2006; 12: 5806
    • 1f Hashmi AS. K, Rudolph M, Huck J, Frey W, Bats JW, Hamzić M. Angew. Chem. Int. Ed. 2009; 48: 5848
    • 1g Hashmi AS. K, Salathé R, Frey W. Chem. Eur. J. 2006; 12: 6991
    • 1h Zeiler A, Ziegler MJ, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2015; 357: 1507
    • 2a Ahlsten N, Cambeiro XC, Perry GJ, Larrosa I. C–H Functionalisation of Heteroaromatic Compounds via Gold Catalysis. In Au-Catalyzed Synthesis and Functionalization of Heterocycles: Topics in Heterocyclic Chemistry, Vol. 46. Bandini M. Springer International Publishing; Switzerland: 2016: 175-226
    • 2b Kirillova MS, Miloserdov FM, Echavarren AM. Hydro­arylation of Alkynes using Cu, Ag, and Au Catalysts . In Catalytic Hydroarylation of Carbon-Carbon Multiple Bonds, Chap. 7. Ackermann L, Gunnoe TB, Habgood LG. Wiley-VCH; Weinheim: 2018
    • 2c de Mendoza P, Echavarren AM. Intramolecular Hydroarylation of Alkynes . In Modern Gold Catalyzed Synthesis . Hashmi SK, Toste DF. Wiley-VCH; Weinheim: 2012: 135-152
    • 2d Muratore ME, Echavarren AM. Gold-Catalyzed Hydroarylation of Alkynes. In PATAI’S Chemistry of Functional Groups. John Wiley & Sons; Chichester: 2009: 1-96
    • 3a Blanc A, Beneteau V, Weibel J.-M, Pale P. Org. Biomol. Chem. 2016; 14: 9184
    • 3b Arcadi A. Gold-Catalyzed Synthesis of Heterocycles . In Gold Catalysis: An Homogeneous Approach . Toste FD, Michelet V. Imperial College Press; London: 2014: 175-224
  • 4 Hashmi AS. K, Häffner T, Rudolph M, Rominger F. Chem. Eur. J. 2011; 17: 8195
  • 5 The use of Au catalysts for the oxidative conversions of furfural and 5-hydroxymethylfurfural is not covered, since in this case the reactivity of the aldehyde moiety, and not of the furan ring itself, is involved.
  • 6 Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
  • 8 Klenk S, Rupf S, Suntrup L, van der Meer M, Sarkar B. Organometallics 2017; 36: 2026
  • 9 Lempke L, Ernst A, Kahl F, Weberskirch R, Krause N. Adv. Synth. Catal. 2016; 358: 1491
  • 10 Riedel S, Maier ME. J. Org. Chem. 2020; 85: 8203
  • 11 Riedel S, Maichle-Mössmer C, Maier ME. J. Org. Chem. 2017; 82: 12798
  • 12 Praveen C, Perumal PT. Chin. J. Catal. 2016; 37: 288
  • 13 Chen HF, Yeh MC. P. J. Chin. Chem. Soc. 2019; 66: 614
  • 14 Liu W.-T, Xu Z.-L, Mou X.-Q, Zhang B.-H, Bao W, Wang S.-H, Lee D, Lei L.-S, Zhang K. Org. Biomol. Chem. 2017; 15: 6333
  • 15 Hamel J.-D, Paquin J.-F. J. Fluorine Chem. 2018; 216: 11
  • 16 Alcaide B, Almendros P, Cembellin S, Fernandez I, Martinez del Campo T. Chem. Eur. J. 2016; 22: 11667
    • 17a Alcaide B, Almendros P, Alonso JM, Quiros MT, Gadzinski P. Adv. Synth. Catal. 2011; 353: 1871
    • 17b Kong W, Fu C, Ma S. Chem. Eur. J. 2011; 17: 13134
  • 18 Gubaidullin RR, Khalitova RR, Galimshina ZR, Spivak AY. Tetrahedron 2018; 74: 1888
  • 19 Ge S, Zhang Y, Tan Z, Li D, Dong S, Liu X, Feng X. Org. Lett. 2020; 22: 3551
  • 20 Zhang C, Jiang H, Zhu S. Chem. Commun. 2017; 53: 2677
  • 21 Hu X, Zhou B, Jin H, Liu Y, Zhang L. Chem. Commun. 2020; 56: 7297
    • 22a Li X, Ma X, Wang Z, Liu PN, Zhang L. Angew. Chem. Int. Ed. 2019; 58: 17180
    • 22b Wang H, Li T, Zheng Z, Zhang L. ACS Catal. 2019; 9: 10339
  • 23 Zorba L, Kidonakis M, Saridakis I, Stratakis M. Org. Lett. 2019; 21: 5552
  • 24 Xue C, Huang X, Wu S, Fu C, Ma S. Org. Chem. Front. 2016; 3: 588
  • 25 Cheng X, Yu Y, Mao Z, Chen J, Huang X. Org. Biomol. Chem. 2016; 14: 3878
  • 26 Miura T, Tanaka T, Matsumoto K, Murakami M. Chem. Eur. J. 2014; 20: 16078
    • 27a Zhang L. Acc. Chem. Res. 2014; 47: 877
    • 27b Yeom H.-S, Shin S. Acc. Chem. Res. 2014; 47: 966
    • 27c Bhunia S, Ghosh P, Patra SR. Adv. Synth. Catal. 2020; 362: 3664
  • 28 Rode N, Marinelli F, Arcadi A, Adak T, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2018; 360: 4790
  • 29 Li J, Xing H.-W, Yang F, Chen Z.-S, Ji K. Org. Lett. 2018; 20: 4622
  • 30 Hamada N, Yamaguchi A, Inuki S, Oishi S, Ohno H. Org. Lett. 2018; 20: 4401
  • 31 Zhang B, Wang T, Zhang Z. J. Org. Chem. 2017; 82: 11644
  • 32 Zang W, Wei Y, Shi M. Chem. Commun. 2019; 55: 8126
  • 33 Nagaraju V, Raju CE, Purnachandar D, Rao VJ, Karunakar GV. ChemistrySelect 2019; 4: 2053

    • For other examples of 1,2-iodine shifts in gold catalysis, see:
    • 34a Morán-Poladura P, Rubio E, González JM. Beilstein J. Org. Chem. 2013; 9: 2120
    • 34b Noesel P, Mueller V, Mader S, Moghimi S, Rudolph M, Braun I, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2015; 357: 500
    • 34c Morán-Poladura P, Rubio E, Gonzalez JM. Angew. Chem. Int. Ed. 2015; 54: 3052
  • 35 Fernández-Canelas P, Rubio E, González JM. Org. Lett. 2019; 21: 6566
  • 36 Bao M, Qian Y, Su H, Wu B, Qiu L, Hu W, Xu X. Org. Lett. 2018; 20: 5332
  • 37 Liao J, Guo P, Chen Q. Catal. Commun. 2016; 77: 22
    • 38a Wei C, Li C.-J. J. Am. Chem. Soc. 2003; 125: 9584
    • 38b Wei C, Li Z, Li C.-J. Synlett 2004; 1472
  • 39 Li J, Rudolph M, Rominger F, Xie J, Hashmi AS. K. Adv. Synth. Catal. 2016; 358: 207
  • 40 Ma R, Yang J, Kelley S, Gung BW. J. Organomet. Chem. 2019; 898: 120865
  • 42 Ma R, Gung BW. Tetrahedron 2020; 76: 130840
    • 43a Wang S, Zhang G, Zhang L. Synlett 2010; 692
    • 43b Shiroodi RK, Gevorgyan V. Chem. Soc. Rev. 2013; 42: 4991
    • 43c Correa A, Marion N, Fensterbank L, Malacria M, Nolan SP, Cavallo L. Angew. Chem. Int. Ed. 2008; 47: 718
  • 44 Sun N, Xie X, Chen H, Liu Y. Chem. Eur. J. 2016; 22: 14175
  • 45 Drew MA, Arndt S, Richardson C, Rudolph M, Hashmi AS. K, Hyland CJ. Chem. Commun. 2019; 55: 13971
  • 46 Widstrom AL, Lear BJ. Appl. Nanosci. 2020; 10: 819
  • 47 Xu G, Liu K, Sun J. Org. Lett. 2018; 20: 72
  • 48 Zhai RL, Xue YS, Liang T, Mi JJ, Xu Z. J. Org. Chem. 2018; 83: 10051
  • 49 Sanz-Vidal A, Miro J, Sanchez-Rosello M, Del Pozo C, Fustero S. J. Org. Chem. 2016; 81: 6515
  • 50 Pirovano V, Brambilla E, Rizzato S, Abbiati G, Bozzi M, Rossi E. J. Org. Chem. 2019; 84: 5150
  • 51 Ibáñez S, Poyatos M, Dawe LN, Gusev D, Peris E. Organometallics 2016; 35: 2747
  • 52 Du X, Yu J, Gong J, Zaman M, Pereshivko OP, Peshkov VA. Eur. J. Org. Chem. 2019; 2502
  • 53 Brambilla E, Pirovano V, Giannangeli M, Abbiati G, Caselli A, Rossi E. Org. Chem. Front. 2019; 6: 3078
  • 54 Zhao Y.-L, Cao Z.-Y, Zeng X.-P, Shi J.-M, Yu Y.-H, Zhou J. Chem. Commun. 2016; 52: 3943
  • 55 Miedziak PJ, Edwards JK, Taylor SH, Knight DW, Tarbit B, Hutchings GJ. Catal. Lett. 2018; 148: 2109
  • 56 Li Y, Wei M, Dai M. Tetrahedron 2017; 73: 4172
  • 57 Li Y, Dai M. Angew. Chem. Int. Ed. 2017; 56: 11624
  • 58 For a review on gold 1,n-dipoles, see: Garayalde D, Nevado C. ACS Catal. 2012; 2: 1462
  • 59 Liu S, Yang P, Peng S, Zhu C, Cao S, Li J, Sun J. Chem. Commun. 2017; 53: 1152
  • 60 Du Q, Neudörfl JM, Schmalz HG. Chem. Eur. J. 2018; 24: 2379
  • 61 Di X, Wang Y, Wu L, Zhang Z.-M, Dai Q, Li W, Zhang J. Org. Lett. 2019; 21: 3018
  • 62 Zhou L, Xu B, Ji D, Zhang ZM, Zhang J. Chin. J. Chem. 2020; 38: 577
  • 63 Yan D, Wang N, Xue T, Wu H, Zhang J, Wu P. ChemCatChem 2020; 12: 4067
  • 64 Wang Y, Zhang Z.-M, Liu F, He Y, Zhang J. Org. Lett. 2018; 20: 6403
  • 65 Gao H, Wu X, Zhang J. Chem. Eur. J. 2011; 17: 2838
  • 66 Qi J, Teng Q, Thirupathi N, Tung C.-H, Xu Z. Org. Lett. 2019; 21: 692
  • 67 Zhang S, Tang A, Chen P, Zhao Z, Miao M, Ren H. Org. Lett. 2020; 22: 848
  • 68 Miao M, Xu H, Jin M, Chen Z, Xu J, Ren H. Org. Lett. 2018; 20: 3096
  • 69 Liu P, Sun J. Org. Lett. 2017; 19: 3482
  • 70 Purnachandar D, Suneel K, Balasubramanian S, Karunakar GV. Org. Biomol. Chem. 2019; 17: 4856