Synlett 2021; 32(12): 1151-1156
DOI: 10.1055/s-0040-1705987
account

Harnessing C–O Bonds in Stereoselective Cross-Coupling and Cross-Electrophile Coupling Reactions

Amberly B. Sanford
,
This work was supported by NIH NIGMS (R01GM100212). A.B.S. was supported by the Allergan Graduate Fellowship.


Abstract

We discuss our laboratory’s research in the activation of alcohol derivatives in cross-coupling and cross-electrophile coupling reactions. Our developed methods enable the use of secondary alcohols to afford tertiary stereogenic centers, which we applied to the synthesis of pharmaceutically relevant compounds and substructures. We first ­discuss the synthesis of bioactive compounds through stereospecific Kumada cross-coupling reactions and follow this with a discussion on the development of our stereoselective cross-electrophile coupling ­reaction to synthesize cyclopropanes.

1 Introduction

2 Cross-Coupling Reactions

3 Cross-Electrophile Coupling Reactions

4 Conclusion



Publication History

Received: 18 September 2020

Accepted after revision: 28 October 2020

Article published online:
27 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Cramer J, Sager CP, Ernst B. J. Med. Chem. 2019; 62: 8915
  • 2 Trader DJ, Carlson EE. Mol. BioSyst. 2012; 8: 2484
    • 3a Nicolaou KC, Sorensen EJ. Classics in Total Synthesis: Targets, Strategies, and Methods, Vol. 1. Wiley-VCH; Weinheim: 1996
    • 3b Hanessian S, Giroux S, Merner BL. Design and Strategy in Organic Synthesis: From the Chiron Approach to Catalysis. Wiley-VCH; Weinheim: 2013
    • 3c Dryzhakov M, Richmond E, Moran J. Synthesis 2016; 48: 935
    • 3d Ajvazi N, Stavber S. ARKIVOC 2018; (ii): 288
    • 4a For representative asymmetric strategies for synthesis of secondary alcohols, see: Comprehensive Asymmetric Catalysis, Vols. I–III. Jacobsen EN, Pfaltz A, Yamamoto H. Springer-Verlag; Heidelberg: 1999
    • 4b For enzymatic strategies, see: Chen B.-S, Ribiero de Souza FZ. RSC Adv. 2019; 9: 2102
    • 5a Paquette LA, Sugimura T. J. Am. Chem. Soc. 1986; 108: 3841
    • 5b Sugimura T, Paquette LA. J. Am. Chem. Soc. 1987; 109: 3017
  • 6 Wipf P, Rector SR, Takahashi H. J. Am. Chem. Soc. 2002; 124: 14848
  • 7 Okano K, Tokuyama H, Fukuyama T. J. Am. Chem. Soc. 2006; 128: 7136
    • 8a Tasker SZ, Standley RA, Jamison TF. Nature 2014; 509: 299
    • 8b Modern Organonickel Chemistry . Yamaru Y. Wiley-VCH; Weinheim: 2005
    • 8c Diccianni JB, Diao T. Trends Chem. 2019; 1: 830
  • 9 For a discussion of the merits of nickel catalysts in activation of C(sp2)–O bonds, see: Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346

    • Kumada:
    • 10a Taylor BL. H, Swift EC, Waetzig JD, Jarvo ER. J. Am. Chem. Soc. 2011; 133: 389
    • 10b Greene MA, Yonova IM, Williams FJ, Jarvo ER. Org. Lett. 2012; 14: 4293
    • 10c Taylor BL. H, Harris MR, Jarvo ER. Angew. Chem. Int. Ed. 2012; 51: 7790
    • 10d Yonova IM, Johnson AG, Osborne CA, Moore CE, Morrissette NS, Jarvo ER. Angew. Chem. Int. Ed. 2014; 53: 2422
    • 10e Tollefson EJ, Dawson DD, Osborne CA, Jarvo ER. J. Am. Chem. Soc. 2014; 136: 14951
    • 10f Dawson DD, Jarvo ER. Org. Process Res. Dev. 2015; 19: 1356
    • 10g Sanford AB, Tollefson EJ, Jarvo ER. Isr. J. Chem. 2020; 60: 402

      Suzuki–Miyaura:
    • 11a Harris MR, Hanna LE, Greene MA, Moore CE, Jarvo ER. J. Am. Chem. Soc. 2013; 135: 3303
    • 11b Johnson AG, Tranquilli MM, Harris MR, Jarvo ER. Tetrahedron Lett. 2015; 56: 3486
    • 11c Zhang S, Taylor BL. H, Ji C, Gao Y, Harris MR, Hanna LE, Jarvo ER, Houk KN, Hong X. J. Am. Chem. Soc. 2017; 139: 12994
  • 12 Negishi: Wisniewska HM, Swift EC, Jarvo ER. J. Am. Chem. Soc. 2013; 135: 9083

    • For representative examples, see:
    • 13a Palchaudhuri R, Nesterenko V, Hergenrother PJ. J. Am. Chem. Soc. 2008; 130: 10274
    • 13b Huang Z, Ducharme Y, MacDonald D, Robichaud A. Curr. Opin. Chem. Biol. 2001; 5: 432
    • 13c Mondal S, Panda G. RSC Adv. 2014; 4: 28317
    • 14a Tollefson EJ, Erickson LW, Jarvo ER. J. Am. Chem. Soc. 2015; 137: 9760
    • 14b Konev MO, Hanna LE, Jarvo ER. Angew. Chem. Int. Ed. 2016; 55: 6730
    • 14c Erickson LW, Lucas EL, Tollefson EJ, Jarvo ER. J. Am. Chem. Soc. 2016; 138: 14006
    • 14d Chen P.-P, Lucas EL, Greene MA, Zhang S, Tollefson EJ, Erickson LW, Taylor BL, Jarvo ER, Hong X. J. Am. Chem. Soc. 2019; 141: 5835
  • 15 Sanford AB, Thane TA, McGinnis TM, Chen P.-P, Hong X, Jarvo ER. J. Am. Chem. Soc. 2020; 142: 5017
    • 16a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 16b Caille S, Cui S, Faul MM, Mennen SM, Tedrow JS, Walker SD. J. Org. Chem. 2019; 84: 4583
    • 16c Méndez-Lucio O, Medina-Franco JL. Drug Discovery Today 2017; 22: 120
    • 16d Birudukota NV. S, Franke R, Hofer B. Org. Biomol. Chem. 2016; 14: 3821
    • 16e Ruddigkeit L, van Deursen R, Blum LC, Reymond J.-L. J. Chem. Inf. Model. 2012; 52: 2864
    • 16f Feher M, Schmidt JM. J. Chem. Inf. Comput. Sci. 2003; 43: 218
  • 17 Alami M, Messaoudi S, Hamze A, Provot O, Brion J.-D, Liu J.-M, Bignon J, Bakala J. WO 2009147217, 2009
  • 18 Bolm C, Rudolph J. J. Am. Chem. Soc. 2002; 124: 14850
  • 19 Zhang F.-Y, Yip C.-W, Cao R, Chan AS. C. Tetrahedron: Asymmetry 1997; 8: 585
    • 20a Haskins NJ. Biomed. Mass Spectrom. 1982; 9: 269
    • 20b Wolfe RR, Chinkes DL. Isotope Tracers in Metabolic Research: Principles and Practice of Kinetic Analysis, 2nd ed. Wiley; Hoboken: 2005: 1
    • 21a Schlenk W, Schlenk WJr. Ber. Dtsch. Chem. Ges. B 1929; 62: 920
    • 21b Wurtz A. Ann. Chim. Phys. 1855; 44: 275
    • 21c Wurtz A. Justus Liebigs Ann. Chem. 1855; 96: 364
  • 22 Felkin H, Swierczewski G. Tetrahedron Lett. 1972; 13: 1433
  • 23 Dawson DD, Oswald VF, Borovik AS, Jarvo ER. Chem. Eur. J. 2020; 26: 3044 ; see also ref. 14d
  • 24 Braga AL, Paixão MW, Westermann B, Schneider PH, Wessjohan LA. J. Org. Chem. 2008; 73: 2879
    • 26a Claisen L, Claparède A. Ber. Dtsch. Chem. Ges. 1881; 14: 2460
    • 26b Heathcock CH, Buse CT, Kleschick WA, Pirrung MC, Sohn JE, Lampe J. J. Org. Chem. 1980; 45: 1066
  • 27 For selective syntheses of diastereomers, see: Ramachandran PV, Nicponski D, Kim B. Org. Lett. 2013; 15: 1398
    • 28a Do H.-Q, Chandrashekar ER. R, Fu GC. J. Am. Chem. Soc. 2013; 135: 16288
    • 28b Liang Z, Xue W, Lin K, Gong H. Org. Lett. 2014; 16: 5620
    • 28c Yu X, Yang T, Wang S, Xu H, Gong H. Org. Lett. 2011; 13: 2138
  • 29 Northrup AB, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 6798
  • 30 Evans DA, Bartroli J, Shih TL. J. Am. Chem. Soc. 1981; 103: 2127