CC BY-NC-ND 4.0 · SynOpen 2020; 04(04): 107-115
DOI: 10.1055/s-0040-1705981
review

Challenging Atroposelective C–H Arylation

,


Abstract

Atropisomeric molecules are privileged scaffolds, not only as ligands for asymmetric synthesis, but also as biologically active products and advanced materials. Although very attractive from a sustainability viewpoint, the direct construction of the stereogenic axis through asymmetric C–H arylation is very challenging and consequently only a few examples have been reported. This short review summarizes these very recent results on the atropo-enantio or diastereo­selective synthesis of atropisomeric (hetero)biaryl molecules; transformations during which the Ar–Ar atropisomeric axis is formed during the C–H activation process.

1 Introduction

2 Atropo-enantioselective Intermolecular Pd-Catalyzed C–H Arylation of Thiophene Derivatives

3 Atropodiastereoselective Intermolecular Pd-Catalyzed C–H Arylation towards Terphenyl Scaffolds Bearing Two Atropisomeric Axes

4 Atropo-enantioselective Intramolecular Pd-Catalyzed C–H Arylation towards Atropisomeric Benzodiazepinones

5 Atropo-enantioselective Intermolecular Pd-Catalyzed C–H Arylation of Heteroarenes

6 Rh-Catalyzed Atropo-enantioselective C–H Arylation of Diazonaphthoquinones

7 Conclusion



Publikationsverlauf

Eingereicht: 28. September 2020

Angenommen nach Revision: 22. Oktober 2020

Artikel online veröffentlicht:
24. November 2020

© 2020. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Siegel JS. Synlett 2018; 29: 2120
    • 1b Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 1c LaPlante SR, Fader DL, Fandrick KR, Fandrick DR, Hucke O, Kemper R, Miller SP. F, Edwards PJ. J. Med. Chem. 2011; 54: 7005
    • 1d Smyth JE, Butler NM, Keller PA. A. Nat. Prod. Rep. 2015; 32: 1562
    • 2a Li Y, Kwong F, Yu W, Chan A. Coord. Chem. Rev. 2007; 251: 2119
    • 2b Ohkuma T, Kurono N. In Privileged Chiral Ligands and Catalysts . Zhou Q.-L. Wiley-VCH; Weinheim, ; 2011: 1-53
  • 3 Rokade BV, Guiry PJ. ACS Catal. 2018; 8: 624 ; and references cited therein
  • 4 Wu Y.-L, Ferroni F, Pieraccini S, Schweizer WB, Frank BB, Spada GP, Diederich F. Org. Biomol. Chem. 2012; 10: 8016

    • For recent reviews on the synthesis of atropisomeric biaryls, see:
    • 6a Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
    • 6b Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 6c Baudoin O. Eur. J. Org. Chem. 2005; 4223
    • 6d Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
    • 6e Loxq P, Manoury E, Poli R, Deydier E, Labande A. Coord. Chem. Rev. 2016; 308: 131
    • 6f Zilate B, Castrogiovanni A, Sparr C. ACS Catal. 2018; 8: 2981
    • 6g Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
    • 6h Liao G, Zhou T, Yao Q.-J, Shi B.-F. Chem. Commun. 2019; 55: 8514
    • 7a Staniland S, Yuan B, Giménez-Agulló N, Marcelli T, Willies SC, Grainger DM, Turner NJ, Clayden J. Chem. Eur. J. 2014; 20: 13084 ; For the pioneering work see the references cited herein
    • 7b Armstrong RJ, Smith MD. Angew. Chem. Int. Ed. 2014; 53: 12822
    • 7c Osako T, Uozumi Y. Org. Lett. 2014; 16: 5866 ; for other examples of transition metal-catalyzed desymmetrization of CS -symmetric achiral biaryls see the references cited herein
    • 7d Perron Q, Alexakis A. Adv. Synth. Catal. 2010; 352: 2611
    • 7e For an application towards the synthesis of natural products see: Graff J, Debande T, Praz J, Guénée L, Alexakis A. Org. Lett. 2013; 15: 4270
    • 7f Mori K, Ichikawa Y, Kobayashi M, Shibata Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2013; 135: 3964
    • 7g Leroux FR, Berthelot A, Bonnafoux L, Panossian A, Colobert F. Chem. Eur. J. 2012; 18: 14232
    • 7h Ashizawa T, Tanaka S, Yamada T. Org. Lett. 2008; 10: 2521
    • 7i Aoyagi N, Ogawa N, Izumi T. Tetrahedron Lett. 2006; 47: 4797 ; for the pioneering work, see the references cited therein
    • 7j Aoyama H, Tokunaga M, Kiyosu J, Iwasawa T, Obora Y, Tsuji Y. J. Am. Chem. Soc. 2005; 127: 10474
    • 7k Ma G, Deng J, Sibi MP. Angew. Chem. Int. Ed. 2014; 53: 11818
    • 7l Lu S, Poh SB, Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 11041
    • 7m Shirakawa S, Wu X, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 14200
    • 7n Cheng D.-J, Yan L, Tian S.-K, Wu M.-Y, Wang L.-X, Fan Z.-L, Zheng S.-C, Liu X.-Y, Tan B. Angew. Chem. Int. Ed. 2014; 53: 3684
    • 7o Latorre A, Urbano A, Carreño MC. Chem. Commun. 2009; 6652
    • 7p Gustafson JL, Lim D, Miller SJ. Science 2010; 328: 1251
    • 7q Ros A, Estepa B, Romírez-López P, Álvarez E, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2013; 135: 15730
    • 7r Bhat V, Wang S, Stoltz BM, Virgil SC. J. Am. Chem. Soc. 2013; 135: 16829
    • 7s Clayden J, Fletcher SP, McDouall JW, Rowbottom SJ. M. J. Am. Chem. Soc. 2009; 131: 5331
    • 7t Li B, Chao Z, Li C, Gu Z. J. Am. Chem. Soc. 2018; 140: 9400
    • 7u Duan L, Zhao Z, Wang F.-L, Zhang Z, Gu Z. ACS Catal. 2019; 9: 98532
    • 7v Zhao K, Li N, Yu J, Gong L.-Z, Gu Z. Angew. Chem. Int. Ed. 2020; 59: 19899 ; and references cited therein
    • 8a Guo F, Konkol LC, Thomson RJ. J. Am. Chem. Soc. 2011; 133: 18
    • 8b Quinonero O, Jean M, Vanthuyne N, Roussel C, Bonne D, Constancieux T, Bressy C, Bugault X, Rodriguez J. Angew. Chem. Int. Ed. 2016; 55: 1401
    • 8c Link A, Sparr C. Angew. Chem. Int. Ed. 2018; 57: 7136
    • 8d Nguyen TT. Org. Biomol. Chem. 2019; 17: 6952

      For selected examples see:
    • 9a Shibata T, Fujimoto T, Yokota K, Takagi K. J. Am. Chem. Soc. 2004; 126: 8382
    • 9b Gutnov A, Heller B, Fisher C, Drexler H.-J, Spannenberg A, Sundermann B, Sundermann C. Angew. Chem. Int. Ed. 2004; 43: 3795
    • 9c Nishida G, Noguchi K, Hirano M, Tanaka K. Angew. Chem. Int. Ed. 2007; 46: 3951
    • 9d Link A, Sparr C. Angew. Chem. Int. Ed. 2014; 53: 5458
  • 10 Zhang D, Wang Q. Coord. Chem. Rev. 2015; 286: 1

    • For selected examples see:
    • 11a Kakiuchi F, Le Gendre P, Yamada A, Ohtaki H, Murai S. Tetrahedron: Asymmetry 2000; 11: 2647
    • 11b Hazra CK, Dherbassy Q, Wencel-Delord J, Colobert F. Angew. Chem. Int. Ed. 2014; 53: 13871

    • For early work, see:
    • 11c Wesch T, Leroux F, Colobert F. Adv. Synth. Catal. 2013; 355: 2139
    • 11d Zheng J, You S.-L. Angew. Chem. Int. Ed. 2014; 53: 13244
    • 11e Ma Y.-N, Zhang H.-Y, Yang S.-D. Org. Lett. 2015; 17: 2034
    • 11f Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
    • 11g Gao D.-W, Gu Q, You S.-L. ACS Catal. 2014; 4: 2741
    • 11h Dherbassy Q, Schwertz G, Chessé M, Hazra CK, Wencel-Delord J, Colobert F. Chem. Eur. J. 2016; 22: 1735
    • 11i Dherbassy Q, Wencel-Delord J, Colobert F. Tetrahedron 2016; 72: 5238
    • 11j Li S.-X, Ma Y.-N, Yang S.-D. Org. Lett. 2017; 19: 1842
    • 11k Yao Q.-J, Zhang S, Zhan B.-B, Shi B.-F. Angew. Chem. Int. Ed. 2017; 56: 6617
    • 11l Liao G, Yao Q.-J, Zhang Z.-Z, Wu Y.-J, Huang D.-Y, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 3661
    • 11m Liao G, Zhou T, Yao Q.-J, Shi B.-F. Chem. Commun. 2019; 55: 8514
    • 11n Wang Q, Cai Z.-J, Liu C.-X, Gu Q, You S.-L. J. Am. Chem. Soc. 2019; 141: 9504
    • 12a For selected examples see: Cammidge AN, Crépy KV. L. Chem. Commun. 2000; 1723
    • 12b Yin J, Buchwald SL. J. Am. Chem. Soc. 2000; 122: 12051
    • 12c Wang S, Li J, Miao T, Wu W, Li Q, Zhuang Y, Zhou Z, Qiu L.-Q. Org. Lett. 2012; 14: 1966
    • 12d Zhou Y, Wang S, Wu W, Li Q, He Y, Zhuang Y, Li L, Pang J, Zhou Z, Qiu L.-Q. Org. Lett. 2013; 15: 5508
    • 12e Tang W, Patel ND, Xu G, Xu X, Savoie J, Ma S, Hao M.-H, Keshipeddy S, Capacci AG, Wei X, Zhang Y, Gao JJ, Li W, Rodriguez S, Lu BZ, Yee NK, Senanayake CH. Org. Lett. 2012; 14: 2258
    • 12f Shen X, Jones GO, Watson DA, Bhayana B, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 11278
    • 12g Bermejo A, Ros A, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2008; 130: 15798
    • 12h Zhang S.-S, Wang Z.-Q, Xu M.-H, Lin G.-Q. Org. Lett. 2010; 12: 5546
    • 12i Genov M, Almorín A, Espinet P. Chem. Eur. J. 2006; 12: 9346
    • 12j Yamamoto T, Akai Y, Nagata Y, Suginome M. Angew. Chem. Int. Ed. 2011; 50: 8844
    • 12k Uozumi Y, Matsuura Y, Arakawa T, Yamada YM. A. Angew. Chem. Int. Ed. 2009; 48: 2708
    • 12l Xu G, Fu W, Liu G, Senanayake CH, Tang W. J. Am. Chem. Soc. 2014; 136: 570
    • 12m Zhou Y, Zhang X, Liang H, Cao Z, Zhao X, He Y, Wang S, Pang J, Zhou Z, Ke Z, Qiu L.-Q. ACS Catal. 2014; 4: 1390
    • 12n Patel ND, Sieber JD, Tcyrulnikov S, Simmons BJ, Rivalti D, Duvvuri K, Zhang Y, Gao DA, Fandrick KR, Haddad N, Lao KS, Mangunuru HP. R, Biswas S, Qu B, Grinberg N, Pennino S, Lee H, Song JJ, Gupton BF, Garg NK, Kozlowski MC, Senanayake CH. ACS Catal. 2018; 8: 10190
    • 12o Shen D, Xu Y, Shi S. J. Am. Chem. Soc. 2019; 141: 14938
  • 13 Yamaguchi K, Yamaguchi J, Studer A, Itami K. Chem. Sci. 2012; 3: 2165
  • 14 Yamaguchi K, Kondo H, Yamaguchi J, Itami K. Chem. Sci. 2013; 4: 3753
  • 15 Bao X, Rodriguez J, Bonne D. Angew. Chem. Int. Ed. 2020; 59: 12623
  • 16 Wencel-Delord J, Colobert F. Synlett 2015; 26: 2644
  • 17 Dherbassy Q, Djukic J.-P, Wencel-Delord J, Colobert F. Angew. Chem. Int. Ed. 2018; 57: 4668
  • 18 Newton CG, Braconi E, Kuziola J, Wodrich MD, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 11040
  • 19 Junior FJ. B, Scotti L, Ishiki H, Botelho SP. S, Da Silva MS, Scotti MT. Mini.-Rev. Med. Chem. 2015; 15: 630
  • 20 Nguyen Q.-H, Guo S.-M, Royal T, Baudoin O, Cramer N. J. Am. Chem. Soc. 2020; 142: 2161
  • 21 Jia Z.-J, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
  • 22 Kong L, Han X, Liu S, Zou Y, Lan Y, Li X. Angew. Chem. Int. Ed. 2020; 59: 7188