CC BY-NC-ND 4.0 · Organic Materials 2020; 02(01): 041-046
DOI: 10.1055/s-0040-1705124
Focus Issue: Structure to Function in Supramolecular Polymers and Materials
Short Communication
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

Unconventional Chiral Amplification in Luminescent Supramolecular Polymers Based on Trisbiphenylamine-tricarboxamides

a  Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
,
a  Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
,
b  Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
,
a  Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
,
b  Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
,
a  Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
› Author Affiliations
Funding Information Financial support by the MINECO of Spain (CTQ2017-82706-P) and Comunidad de Madrid (P2018/NMT-4389) is acknowledged.
Further Information

Publication History

Received: 17 December 2019

Accepted after revision: 29 January 2020

Publication Date:
30 March 2020 (online)


Abstract

We describe the synthesis of two propeller-shaped, emissive trisbiphenylamines 1 and (S)-2. Whilst achiral 1 forms supramolecular polymers following a cooperative mechanism, the self-assembly of chiral (S)-2 can be described by an isodesmic mechanism. Despite the isodesmic character of the supramolecular polymerization of (S)-2, an efficient transfer of chirality from the embedded point chirality of the peripheral side chains to the aggregates is demonstrated. The co-assembly of 1 and (S)-2 in a sergeants-and-soldiers experiment shows a very different dichroic response to that registered for pristine (S)-2, with a copolymerization curve displaying two transitions. Both these transitions coincide with those observed for the pristine achiral and chiral components, thus suggesting a self-sorting effect.

Supporting Information

Supporting information for this article is available online at https://doi.org.


Supporting Information

 
  • References

    • 1a Jiang X, Karlsson KM, Gabrielsson E, Johansson EM. J, Quintana M, Karlsson M, Sun L, Boschloo G, Hagfeldt A. Adv. Funct. Mater. 2011; 21: 2944
    • 1b Liu Q, Jiang K, Wang L, Wen Y, Wang J, Ma Y, Song Y. Appl. Phys. Lett. 2010; 96: 213305
    • 1c Jeon NJ, Lee J, Noh JH, Nazeeruddin MK, Grätzel M, Seok SI. J. Am. Chem. Soc. 2013; 135: 19087
    • 2a Hoffmann ST, Jaiser F, Hayer A, Bässler H, Unger T, Athanasopoulos S, Neher T, Köhler A. J. Am. Chem. Soc. 2013; 135: 1772
    • 2b Kaiser AB. Adv. Mater. 2001; 13: 927
    • 3a Dorca Y, Greciano EE, Valera JS, Gómez R, Sánchez L. Chem. Eur. J. 2019; 25: 5848
    • 3b Dorca Y, Matern J, Fernández G, Sánchez L. Isr. J. Chem. 2019; 59: 869
  • 4 Faramarzi V, Niess F, Moulin E, Maaloum M, Dayen J-F, Beaufrand J-B, Zanettini S, Doudin B, Giuseppone N. Nat. Chem. 2012; 4: 48
  • 5 Kim T, Mori T, Aida T, Miyajima D. Chem. Sci. 2016; 7: 6689
    • 6a Li F, Li X, Wang Y, Zhang X. Angew. Chem. Int. Ed. 2019; 58: 17994
    • 6b Osypenko A, Moulin E, Gavat O, Fuks G, Maaloum M, Koenis MA. J, Buma WJ, Giuseppone N. Chem. Eur. J 2019; 25: 13008
    • 7 Palmans AR. A, Meijer EW. Angew. Chem. Int. Ed. 2007; 46: 8948
  • 8 De Greef TF. A, Smulders MM. J, Wolffs M, Schenning AP. H. J, Sijbesma RP, Meijer EW. Chem. Rev. 2009; 109: 5687
  • 9 Matern J, Dorca Y, Sánchez L, Fernández G. Angew. Chem. Int. Ed. 2019; 58: 16730
  • 10 Adelizzi B, Filot IA. W, Palmans AR. A, Meijer EW. Chem. Eur. J 2017; 23: 6103
  • 11 Van Zee NJ, Adelizzi B, Mabesoone MF. J, Meng X, Aloi A, Zha RH, Lutz M, Filot IA. W, Palmans AR. A, Meijer EW. Nature 2018; 558: 100
  • 12 Aparicio F, Nieto-Ortega B, Nájera F, Ramírez FJ, López Navarrete JT, Casado J, Sánchez L. Angew. Chem. Int. Ed. 2014; 53: 1373
  • 13 Smulders MM. J, Filot IA. W, Leenders JM. A, van der Schoot P, Palmans AR. A, Schenning AP. H. J, Meijer EW. J. Am. Chem. Soc. 2010; 132: 611
    • 14a Valera JS, Gómez R, Sánchez L. Angew. Chem. Int. Ed. 2019; 58: 510
    • 14b Hifsudheen M, Mishra RK, Vedhanarayanan B, Praveen VK, Ajayaghosh A. Angew. Chem. Int. Ed. 2017; 56: 12634
    • 15a Lübtow M, Helmers I, Stepanenko V, Albuquerque RQ, Marder TB, Fernández G. Chem. Eur. J. 2017; 23: 6198
    • 15b García F, Viruela PM, Matesanz E, Ortí E, Sánchez L. Chem. Eur. J. 2011; 17: 7755
    • 15c Aparicio F, García F, Sánchez L. Chem. Eur. J. 2013; 19: 3239
  • 16 ten Eikelder HM. M, Markvoort AJ, de Greef TF. A, Hilbers PA. J. J. Phys. Chem. B 2012; 116: 5291
    • 17a García F, Korevaar PA, Verlee A, Meijer EW, Palmans AR. A, Sánchez L. Chem. Commun. 2013; 49: 8674
    • 17b Allampally NK, Mayoral MJ, Chansai S, Lagunas MC, Hardacre C, Stepanenko V, Albuquerque RQ, Fernández G. Chem. Eur. J. 2016; 22: 7810
    • 17c Rödle A, Ritschel B, Mück-Lichtenfeld C, Stepanenko V, Fernández G. Chem. Eur. J. 2016; 22: 15772
  • 18 Greciano EE, Calbo J, Buendía J, Cerdá J, Aragó J, Ortí E, Sánchez L. J. Am. Chem. Soc. 2019; 141: 7463
  • 19 Harada N, Nakanishi K. J. Am. Chem. Soc. 1969; 91: 3989
    • 20a Buendía J, García F, Yélamos B, Sánchez L. Chem. Commun. 2016; 52: 8830
    • 20b Kulkarni C, Korevaar PA, Bejagam KK, Palmans AR. A, Meijer EW, George SJ. J. Am. Chem. Soc. 2017; 139: 13867
    • 20c Dehm V, Chen Z, Baumeister U, Prins P, Siebbeles LD. A, Würthner F. Org. Lett. 2007; 9: 1085
    • 20d Metzroth T, Hoffmann A, Martín-Rapún R, Smulders MM. J, Pieterse K, Palmans AR. A, Vekemans JA. J. M, Meijer EW, Spiess HW, Gauss J. Chem. Sci. 2011; 2: 69
    • 20e Haino T, Tanaka M, Fukazawa Y. Chem Comm. 2008; 468
  • 21 Ghosh G, Paul M, Sakurai T, Matsuda W, Seki S, Ghosh S. Chem. Eur. J. 2018; 24: 1938
  • 22 Adelizzi B, Aloi A, Markvoort AJ, Ten Eikelder HM. M, Voets IK, Palmans AR. A, Meijer EW. J. Am. Chem. Soc. 2018; 140: 7168
    • 23a Adelizzi B, Van Zee NJ, de Windt LN. J, Palmans AR. A, Meijer EW. J. Am. Chem. Soc. 2018; 140: 6110
    • 23b Coelho JP, Matern J, Albuquerque RQ, Fernández G. Chem. Eur. J. 2019; 25: 8960
  • 24 Aratsu K, Yagai S. ChemPlusChem 2019; 84: 619
  • 25 Aparicio F, Cherumukkil S, Ajayaghosh A, Sánchez L. Langmuir 2016; 32: 284