CC BY 4.0 · VCOT Open 2020; 03(01): e11-e18
DOI: 10.1055/s-0040-1702986
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Marked Directional Skull Asymmetry in the Araucan Horse

Pere M. Parés-Casanova
1   Department of Animal Science, University of Lleida, Lleida, Catalonia, Spain
,
René Alejandro Crosby-Granados
2   Facultad de Medicina Veterinaria y Zootecnia, Grupo de Investigaciones los Araucos, Universidad Cooperativa de Colombia, Arauca, Arauca, Colombia
,
Fabián Muñoz
2   Facultad de Medicina Veterinaria y Zootecnia, Grupo de Investigaciones los Araucos, Universidad Cooperativa de Colombia, Arauca, Arauca, Colombia
,
Arcesio Salamanca-Carreño
2   Facultad de Medicina Veterinaria y Zootecnia, Grupo de Investigaciones los Araucos, Universidad Cooperativa de Colombia, Arauca, Arauca, Colombia
› Author Affiliations
Funding None.
Further Information

Publication History

07 October 2019

13 January 2020

Publication Date:
14 March 2020 (online)

Abstract

Background Deviations from the perfect symmetry of normally bilateral symmetrical characters occur during individual development due to the influence of multiple factors. Fluctuating asymmetry (FA) is the random developmental variation of a trait (or character) that is perfectly symmetrical, on average, across a population. Directional asymmetry (DA) occurs when one side of the pair of body sides is strongly more marked.

Objective We investigated the presence and level of skull FA and DA in the Araucan horse, a breed from East Colombia.

Study Design A sample of 21 skulls belonging to adult animals was studied by means of standard geometric–morphometric methods using 16 landmarks on the dorsal aspect of the crania.

Results Measurements showed a significant DA with a consistent rightward shift of the splanchnocrania.

Conclusions The results of this study raise questions about the influence of masticatory biomechanics on the asymmetric development of the skull, and also about how management and ingesta-specific properties (such as abrasiveness) may influence this asymmetry.

Authors' Contributions

All authors analysed the data and drafted the manuscript. PMPC designed the study, and directed implementation and data collection. ASC, RCG and FAM collected the data, and ASC provided necessary logistical support.


 
  • References

  • 1 Amik T. Of mice, mothers and mirror-images: testing relationships between asymmetry and fecundity. Thesis. University of Guelph; 2001:53
  • 2 Rasskin-Gutman D. Organized mayhem in Bilateria Baupläne: symmetry and animal complexity. Coloquios Paleontol 2003; 1 (01) 559-567
  • 3 Cocilovo JA, Varela HH, Quevedo S. La asimetría bilateral y la inestabilidad del desarrollo. Rev Argent Antropol Biol 2006; 8 (01) 121-144
  • 4 Auffray JC, Debat V, Alibert P. Shape asymmetry and developmental stability. In: Mark A.J. Chaplain, G.D. Singh JCM, eds. On Growth and Form: Spatio-Temporal Pattern Formation in Biology. New York: John Wiley and Sons Ltd; 1999: 309-324
  • 5 Angelopoulou MV, Vlachou V, Halazonetis DJ. Fluctuating molar asymmetry in relation to environmental radioactivity. Arch Oral Biol 2009; 54 (07) 666-670
  • 6 Parés-Casanova PM, Kucherova I. Horn antisymmetry in a local goat population. Int J Res Agric Food Sci 2013; 1 (02) 12-17
  • 7 López-Romero F, Zúñiga G, Martínez-Jerónimo F. Asymmetric patterns in the cranial skeleton of zebrafish (Danio rerio) exposed to sodium pentachlorophenate at different embryonic developmental stages. Ecotoxicol Environ Saf 2012; 84: 25-31
  • 8 Leśniak K. Directional asymmetry of facial and limb traits in horses and ponies. Vet J 2013; 198 (01) (Suppl. 01) e46-e51
  • 9 Kharlamova AV, Trut LN, Chase K, Kukekova AV, Lark KG. Directional asymmetry in the limbs, skull and pelvis of the silver fox (V. vulpes). J Morphol 2010; 271 (12) 1501-1508
  • 10 Parés-Casanova PM, Esteve-Puig C. Directional and fluctuating asymmetries in domestic pig skulls. Research 2014; 1 (828) 1-5
  • 11 Parés-Casanova PM. Age-dependent mandibular asymmetries in domestic pigs. Research 2014; 1 (797) 4-7
  • 12 Wilson GH, McDonald K, O'Connell MJ. Skeletal forelimb measurements and hoof spread in relation to asymmetry in the bilateral forelimb of horses. Equine Vet J 2009; 41 (03) 238-241
  • 13 Parés-Casanova PM. Harmonic analysis of equine hoof form and its matched symmetry. Research 2014; 1 (889) 1-4
  • 14 Parés-Casanova PM, Bravi R. Directional and fluctuating asymmetries in domestic sheep skulls. J Zool Biosci Res 2014; 2 (03) 11-17
  • 15 Carter AJR, Osborne E, Houle D. Heritability of directional asymmetry in Drosophila melanogaster. Int J Evol Biol 2009; 2010: 759159 . Doi: 10.4061/2009/759159
  • 16 Bookstein FL. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, ed.). Cambridge; 1991. . Doi: 10.1002/sim.4780120711
  • 17 Mardia KV, Bookstein FL, Moreton IJ. Statistical assessment of bilateral symmetry of shapes. Biometrika Trust 2000; 87 (02) 285-300
  • 18 Salamanca-Carreño A, Monroy N, Parés-Casanova PM, Crosby RA. Aporte a la evaluación para la preservación del caballo Criollo Araucano en Colombia. Zootec Trop 2015; 33 (04) 317-325
  • 19 Salamanca-Carreño A, Parés-Casanova PM, Crosby RA, Monroy N. Análisis biométrico del caballo Criollo Araucano. Arch Zootec 2017; 66 (253) 267-278
  • 20 Klingenberg CP. Developmental Constraints, Modules, and Evolvability. In: Variation. Elsevier; 2005: 219-247
  • 21 Hallgrímsson B, Brown JJ, Ford-Hutchinson AF, Sheets HD, Zelditch ML, Jirik FR. The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration. Evol Dev 2006; 8 (01) 61-73
  • 22 Vallejo RM, Guerrero JA, González-Cózatl FX. Patterns of differentiation and disparity in cranial morphology in rodent species of the genus Megadontomys (Rodentia: Cricetidae). Zool Stud 2017; 56: 14 . Doi: 10.6620/ZS.2017.56-14
  • 23 Von den Driesch A. A Guide to the Measurement of Animal Bones from Archaeological Sites. Massachusetts: Peabody Museum of Archaeology and Ethnology Harvard University; 1976
  • 24 Rohlf FJ. The tps series of software. Hystrix 2015; 26 (01) 9-12
  • 25 Klingenberg CP, McIntyre GS, Zaklan SD. Left-right asymmetry of fly wings and the evolution of body axes. Proc Biol Sci 1998; 265 (1402): 1255-1259
  • 26 Webster M, Sheets HD. A practical introduction to landmark-based geometric morphometrics. In: Alroy J, Hunt G. , eds. Quantitative Methods in Paleobiology. The Paleontological Society; 2010: 163-188
  • 27 Klingenberg CP. Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypotheses. Evol Dev 2009; 11 (04) 405-421
  • 28 Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 2011; 11 (02) 353-357
  • 29 Rowe L, Repasky RR, Palmer AR. Size-dependent asymmetry: fluctuating asymmetry versus antisymmetry and its relevance to condition-dependent signaling. Evolution 1997; 51 (05) 1401-1408
  • 30 Klingenberg CP, McIntyre GS. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 1998; 52 (05) 1363-1375
  • 31 Bartosiewicz L, Van Neer W, Lentacker A. Metapodial asymmetry in draft cattle. Int J Osteoarchaeol 1993; 3 (02) 69-75
  • 32 Ocal MK, Sevil F, Parin U. A quantitative study on the digital bones of cattle. Ann Anat 2004; 186 (02) 165-168
  • 33 Morgante M, Gianesella M, Versace E. , et al. Preliminary study on metabolic profile of pregnant and non-pregnant ewes with high or low degree of behavioral lateralization. Anim Sci J 2010; 81 (06) 722-730
  • 34 Austin NP, Rogers LJ. Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses, Equus caballus. Anim Behav 2012; 83 (01) 239-247
  • 35 Gourso C, Düpjan S, Tuchscherer B, Lisette MCL. Behavioural lateralization in domestic pigs (Sus scrofa)—variations between motor functions and individuals. Laterality, Asymmetries Brain. Behav Cogn 2018; 23 (05) 576-598
  • 36 Auerbach BM, Ruff CB. Limb bone bilateral asymmetry: variability and commonality among modern humans. J Hum Evol 2006; 50 (02) 203-218
  • 37 Blackburn A. Bilateral asymmetry of the humerus during growth and development. Am J Phys Anthropol 2011; 145 (04) 639-646
  • 38 Dias GJ, Cook RB, Mirhosseini M. Influence of food consistency on growth and morphology of the mandibular condyle. Clin Anat 2011; 24 (05) 590-598
  • 39 Hems T, Tillmann B. Tendon entheses of the human masticatory muscles. Anat Embryol (Berl) 2000; 202 (03) 201-208
  • 40 Parés-Casanova PM. Conservative neural symmetry of the caprine mandible. Korean J Vet Res 2013; 53 (04) 1-4
  • 41 Parés-Casanova PM. Existence of mandibular directional asymmetry in the European wild boar (Sus scrofa Linnaeus, 1758). J Morphol Sci 2014; 31 (04) 1-5
  • 42 Marado LM, Silva AM. Dental and oral nonmetric traits in a Coimbra reference sample: testing intrasample chronological and spatial variation. Archaeol Anthropol Sci 2018; 10 (05) 1165-1177
  • 43 Reeves NM, Auerbach BM, Sylvester AD. Fluctuating and directional asymmetry in the long bones of captive cotton-top tamarins (Saguinus oedipus). Am J Phys Anthropol 2016; 160 (01) 41-51
  • 44 Brown C, Magat M. Cerebral lateralization determines hand preferences in Australian parrots. Biol Lett 2011; 7 (04) 496-498
  • 45 Hackert R, Maes LD, Herbin M, Libourel PA, Abourachid A. Limb preference in the gallop of dogs and the half-bound of pikas on flat ground. Laterality 2008; 13 (04) 310-319
  • 46 Leśniak K, Whittington L, Mapletoft S. , et al. The influence of body mass and height on equine hoof conformation and symmetry. J Equine Vet Sci 2019; 77: 43-49