Thromb Haemost 2020; 120(03): 466-476
DOI: 10.1055/s-0040-1702228
Blood Cells, Inflammation and Infection
Georg Thieme Verlag KG Stuttgart · New York

Endothelial CD40 Mediates Microvascular von Willebrand Factor-Dependent Platelet Adhesion Inducing Inflammatory Venothrombosis in ADAMTS13 Knockout Mice

Sibgha Tahir
1   Walter Brendel Centre of Experimental Medicine and Biomedical Center, Ludwig-Maximilians-University of Munich, Germany
2   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Germany
3   German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
,
Andreas H. Wagner
2   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Germany
,
Steffen Dietzel
1   Walter Brendel Centre of Experimental Medicine and Biomedical Center, Ludwig-Maximilians-University of Munich, Germany
,
Hanna Mannell
1   Walter Brendel Centre of Experimental Medicine and Biomedical Center, Ludwig-Maximilians-University of Munich, Germany
,
Joachim Pircher
1   Walter Brendel Centre of Experimental Medicine and Biomedical Center, Ludwig-Maximilians-University of Munich, Germany
3   German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
4   Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
,
Ludwig T. Weckbach
1   Walter Brendel Centre of Experimental Medicine and Biomedical Center, Ludwig-Maximilians-University of Munich, Germany
3   German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
4   Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
,
Markus Hecker*
2   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Germany
5   German Centre for Cardiovascular Research, Partner Site Heidelberg-Mannheim, Heidelberg, Germany
,
Ulrich Pohl*
1   Walter Brendel Centre of Experimental Medicine and Biomedical Center, Ludwig-Maximilians-University of Munich, Germany
3   German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
› Author Affiliations
Funding This project has been supported by the European Commission (Marie Curie ITN SmArteR) and has received funding from the European Union's 7th Framework Program for Research, Technological Development and Demonstration under grant agreement no. 606998. Supported by the DZHK, Project 81Z1600211 “Vascular regeneration/remodeling.”
Further Information

Publication History

08 August 2019

11 January 2020

Publication Date:
05 March 2020 (online)

Abstract

Background von Willebrand factor (vWF) plays an important role in platelet activation. CD40–CD40 ligand (CD40L) induced vWF release has been described in large vessels and cultured endothelium, but its role in the microcirculation is not known. Here, we studied whether CD40 is expressed in murine microvessels in vivo, whether CD40L induces platelet adhesion and leukocyte activation, and how deficiency of the vWF cleaving enzyme ADAMTS13 affects these processes.

Methods and Results The role of CD40L in the formation of beaded platelet strings reflecting their adhesion to ultralarge vWF fibers (ULVWF) was analyzed in the murine cremaster microcirculation in vivo. Expression of CD40 and vWF was studied by immunohistochemistry in isolated and fixed cremasters. Microvascular CD40 was only expressed under inflammatory conditions and exclusively in venous endothelium. We demonstrate that CD40L treatment augmented the number of platelet strings, reflecting ULVWF multimer formation exclusively in venules and small veins. In ADAMTS13 knockout mice, the number of platelet strings further increased to a significant extent. As a consequence extensive thrombus formation was induced in venules of ADAMTS13 knockout mice. In addition, circulating leukocytes showed primary and rapid adherence to these platelet strings followed by preferential extravasation in these areas.

Conclusion CD40L is an important stimulus of microvascular endothelial ULVWF release, subsequent platelet string formation and leukocyte extravasation but only in venous vessels under inflammatory conditions. Here, the lack of ADAMTS13 leads to severe thrombus formation. The results identify CD40 expression and ADAMTS13 activity as important targets to prevent microvascular inflammatory thrombosis.

Authors' Contributions

S.T. performed experiments, analyzed and interpreted data with support of U.P; S.D., H.M., J.P., and L.T.W. carried out experiments; A.H.W., M.H., and U.P. designed the study; and S.T. and U.P. wrote the manuscript.


* H.M. and U.P. share senior authorship.


Supplementary Material

 
  • References

  • 1 von Brühl ML, Stark K, Steinhart A. , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 2 Granger DN, Vowinkel T, Petnehazy T. Modulation of the inflammatory response in cardiovascular disease. Hypertension 2004; 43 (05) 924-931
  • 3 Jin R, Xiao AY, Song Z. , et al. Platelet CD40 mediates leukocyte recruitment and neointima formation after arterial denudation injury in atherosclerosis-prone mice. Am J Pathol 2018; 188 (01) 252-263
  • 4 Chen J, Chung DW. Inflammation, von Willebrand factor, and ADAMTS13. Blood 2018; 132 (02) 141-147
  • 5 Yeung J, Li W, Holinstat M. Platelet signaling and disease: targeted therapy for thrombosis and other related diseases. Pharmacol Rev 2018; 70 (03) 526-548
  • 6 Zuchtriegel G, Uhl B, Puhr-Westerheide D. , et al. Platelets guide leukocytes to their sites of extravasation. PLoS Biol 2016; 14 (05) e1002459
  • 7 Popa M, Tahir S, Elrod J. , et al. Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell-platelet-monocyte interaction. Proc Natl Acad Sci U S A 2018; 115 (24) E5556-E5565
  • 8 Huo Y, Schober A, Forlow SB. , et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 9 (01) 61-67
  • 9 Patzelt J, Verschoor A, Langer HF. Platelets and the complement cascade in atherosclerosis. Front Physiol 2015; 6: 49
  • 10 Schulz C, Massberg S. Platelets in atherosclerosis and thrombosis. Handb Exp Pharmacol 2012; (210) 111-133
  • 11 Ahmadsei M, Lievens D, Weber C, von Hundelshausen P, Gerdes N. Immune-mediated and lipid-mediated platelet function in atherosclerosis. Curr Opin Lipidol 2015; 26 (05) 438-448
  • 12 Karshovska E, Weber C, von Hundelshausen P. Platelet chemokines in health and disease. Thromb Haemost 2013; 110 (05) 894-902
  • 13 Van Hinsbergh VW, Tasev D. Platelets and thromboxane receptors: pivotal players in arteriogenesis. Cardiovasc Res 2015; 107 (04) 400-402
  • 14 Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 2007; 21 (02) 99-111
  • 15 Ho-Tin-Noé B, Demers M, Wagner DD. How platelets safeguard vascular integrity. J Thromb Haemost 2011; 9 (Suppl. 01) 56-65
  • 16 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115 (12) 3378-3384
  • 17 Rack K, Huck V, Hoore M, Fedosov DA, Schneider SW, Gompper G. Margination and stretching of von Willebrand factor in the blood stream enable adhesion. Sci Rep 2017; 7 (01) 14278
  • 18 Chen Y, Ruggeri ZM, Du X. 14-3-3 proteins in platelet biology and glycoprotein Ib-IX signaling. Blood 2018; 131 (22) 2436-2448
  • 19 Huck V, Schneider MF, Gorzelanny C, Schneider SW. The various states of von Willebrand factor and their function in physiology and pathophysiology. Thromb Haemost 2014; 111 (04) 598-609
  • 20 Bergmeier W, Piffath CL, Goerge T. , et al. The role of platelet adhesion receptor GPIbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci U S A 2006; 103 (45) 16900-16905
  • 21 Margraf A, Nussbaum C, Sperandio M. Ontogeny of platelet function. Blood Adv 2019; 3 (04) 692-703
  • 22 Sanders YV, Eikenboom J, de Wee EM. , et al; WiN Study Group. Reduced prevalence of arterial thrombosis in von Willebrand disease. J Thromb Haemost 2013; 11 (05) 845-854
  • 23 De Ceunynck K, De Meyer SF, Vanhoorelbeke K. Unwinding the von Willebrand factor strings puzzle. Blood 2013; 121 (02) 270-277
  • 24 Lopes da Silva M, Cutler DF. von Willebrand factor multimerization and the polarity of secretory pathways in endothelial cells. Blood 2016; 128 (02) 277-285
  • 25 Valentijn KM, van Driel LF, Mourik MJ. , et al. Multigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells. Blood 2010; 116 (10) 1807-1816
  • 26 Schneider SW, Nuschele S, Wixforth A. , et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A 2007; 104 (19) 7899-7903
  • 27 Kragh T, Napoleone M, Fallah MA, Gritsch H, Schneider MF, Reininger AJ. High shear dependent von Willebrand factor self-assembly fostered by platelet interaction and controlled by ADAMTS13. Thromb Res 2014; 133 (06) 1079-1087
  • 28 Ferrer-Marin F, Stanworth S, Josephson C, Sola-Visner M. Distinct differences in platelet production and function between neonates and adults: implications for platelet transfusion practice. Transfusion 2013; 53 (11) 2814-2821
  • 29 Margraf A, Nussbaum C, Rohwedder I. , et al. Maturation of platelet function during murine fetal development in vivo. Arterioscler Thromb Vasc Biol 2017; 37 (06) 1076-1086
  • 30 Katz JA, Moake JL, McPherson PD. , et al. Relationship between human development and disappearance of unusually large von Willebrand factor multimers from plasma. Blood 1989; 73 (07) 1851-1858
  • 31 Hellström-Westas L, Ley D, Berg AC, Kristoffersson AC, Holmberg L. VWF-cleaving protease (ADAMTS13) in premature infants. Acta Paediatr 2005; 94 (02) 205-210
  • 32 Ferrer-Marin F, Chavda C, Lampa M, Michelson AD, Frelinger III AL, Sola-Visner M. Effects of in vitro adult platelet transfusions on neonatal hemostasis. J Thromb Haemost 2011; 9 (05) 1020-1028
  • 33 Crawley JT, Lane DA, Woodward M, Rumley A, Lowe GD. Evidence that high von Willebrand factor and low ADAMTS-13 levels independently increase the risk of a non-fatal heart attack. J Thromb Haemost 2008; 6 (04) 583-588
  • 34 Aibar J, Castro P, Espinosa G. , et al. ADAMTS-13 in critically Ill patients with septic syndromes and noninfectious systemic inflammatory response syndrome. Shock 2015; 43 (06) 556-562
  • 35 Takaya H, Yoshiji H, Kawaratani H. , et al. Decreased activity of plasma ADAMTS13 are related to enhanced cytokinemia and endotoxemia in patients with acute liver failure. Biomed Rep 2017; 7 (03) 277-285
  • 36 De Maeyer B, De Meyer SF, Feys HB. , et al. The distal carboxyterminal domains of murine ADAMTS13 influence proteolysis of platelet-decorated VWF strings in vivo. J Thromb Haemost 2010; 8 (10) 2305-2312
  • 37 Dong JF. Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J Thromb Haemost 2005; 3 (08) 1710-1716
  • 38 Shim K, Anderson PJ, Tuley EA, Wiswall E, Sadler JE. Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress. Blood 2008; 111 (02) 651-657
  • 39 Turner NA, Nolasco L, Ruggeri ZM, Moake JL. Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood 2009; 114 (24) 5102-5111
  • 40 Shida Y, Nishio K, Sugimoto M. , et al. Functional imaging of shear-dependent activity of ADAMTS13 in regulating mural thrombus growth under whole blood flow conditions. Blood 2008; 111 (03) 1295-1298
  • 41 Motto DG, Chauhan AK, Zhu G. , et al. Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. J Clin Invest 2005; 115 (10) 2752-2761
  • 42 Noone DG, Riedl M, Licht C. The role of von Willebrand factor in thrombotic microangiopathy. Pediatr Nephrol 2018; 33 (08) 1297-1307
  • 43 Banno F, Chauhan AK, Miyata T. The function of ADAMTS13 in thrombogenesis in vivo: insights from mutant mice. Int J Hematol 2010; 91 (01) 30-35
  • 44 Desch KC, Motto DG. Thrombotic thrombocytopenic purpura in humans and mice. Arterioscler Thromb Vasc Biol 2007; 27 (09) 1901-1908
  • 45 Lorenzi O, Frieden M, Villemin P, Fournier M, Foti M, Vischer UM. Protein kinase C-delta mediates von Willebrand factor secretion from endothelial cells in response to vascular endothelial growth factor (VEGF) but not histamine. J Thromb Haemost 2008; 6 (11) 1962-1969
  • 46 Xiong Y, Huo Y, Chen C. , et al. Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-gamma 1- and protein kinase A-dependent pathways. J Biol Chem 2009; 284 (35) 23217-23224
  • 47 Mojiri A, Nakhaii-Nejad M, Phan WL. , et al. Hypoxia results in upregulation and de novo activation of von Willebrand factor expression in lung endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33 (06) 1329-1338
  • 48 Möller K, Adolph O, Grünow J. , et al. Mechanism and functional impact of CD40 ligand-induced von Willebrand factor release from endothelial cells. Thromb Haemost 2015; 113 (05) 1095-1108
  • 49 Henn V, Slupsky JR, Gräfe M. , et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667): 591-594
  • 50 Mobarrez F, Sjövik C, Soop A. , et al. CD40L expression in plasma of volunteers following LPS administration: A comparison between assay of CD40L on platelet microvesicles and soluble CD40L. Platelets 2015; 26 (05) 486-490
  • 51 Michel NA, Zirlik A, Wolf D. CD40L and Its Receptors in Atherothrombosis-An Update. Front Cardiovasc Med 2017; 4: 40
  • 52 Karmann K, Hughes CC, Schechner J, Fanslow WC, Pober JS. CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc Natl Acad Sci U S A 1995; 92 (10) 4342-4346
  • 53 Krzesz R, Wagner AH, Cattaruzza M, Hecker M. Cytokine-inducible CD40 gene expression in vascular smooth muscle cells is mediated by nuclear factor kappaB and signal transducer and activation of transcription-1. FEBS Lett 1999; 453 (1-2): 191-196
  • 54 Chakrabarti S, Rizvi M, Pathak D, Kirber MT, Freedman JE. Hypoxia influences CD40-CD40L mediated inflammation in endothelial and monocytic cells. Immunol Lett 2009; 122 (02) 170-184
  • 55 Garlichs CD, Geis T, Goppelt-Struebe M. , et al. Induction of cyclooxygenase-2 and enhanced release of prostaglandin E(2) and I(2) in human endothelial cells by engagement of CD40. Atherosclerosis 2002; 163 (01) 9-16
  • 56 Miller DL, Yaron R, Yellin MJ. CD40L-CD40 interactions regulate endothelial cell surface tissue factor and thrombomodulin expression. J Leukoc Biol 1998; 63 (03) 373-379
  • 57 Schönbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 2001; 58 (01) 4-43
  • 58 Dormond O, Contreras AG, Meijer E. , et al. CD40-induced signaling in human endothelial cells results in mTORC2- and Akt-dependent expression of vascular endothelial growth factor in vitro and in vivo. J Immunol 2008; 181 (11) 8088-8095
  • 59 Song Z, Zhu X, Jin R. , et al. Roles of the kinase TAK1 in CD40-mediated effects on vascular oxidative stress and neointima formation after vascular injury. PLoS One 2014; 9 (07) e101671
  • 60 Browatzki M, Pfeiffer CA, Schmidt J, Kranzhöfer R. Endothelin-1 induces functionally active CD40 protein via nuclear factor-kappaB in human vascular smooth muscle cells. Eur J Med Res 2007; 12 (03) 129-133
  • 61 Hassan GS, Merhi Y, Mourad W. CD40 ligand: a neo-inflammatory molecule in vascular diseases. Immunobiology 2012; 217 (05) 521-532
  • 62 Stokes KY, Calahan L, Hamric CM, Russell JM, Granger DN. CD40/CD40L contributes to hypercholesterolemia-induced microvascular inflammation. Am J Physiol Heart Circ Physiol 2009; 296 (03) H689-H697
  • 63 Mach F, Schönbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998; 394 (6689): 200-203
  • 64 Korff T, Aufgebauer K, Hecker M. Cyclic stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-beta1 response. Circulation 2007; 116 (20) 2288-2297
  • 65 Myers TO, Joyner WL, Gilmore JP. Angiotensin reactivity in the cheek pouch of the renovascular hypertensive hamster. Hypertension 1988; 12 (04) 373-379
  • 66 Baez S. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 1973; 5 (03) 384-394
  • 67 Koch E, Pircher J, Czermak T. , et al. The endothelial tyrosine phosphatase SHP-1 plays an important role for vascular haemostasis in TNFα -induced inflammation in vivo. Mediators Inflamm 2013; 2013: 279781
  • 68 Hassan GS, Merhi Y, Mourad WM. CD154 and its receptors in inflammatory vascular pathologies. Trends Immunol 2009; 30 (04) 165-172
  • 69 Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229 (01) 152-172
  • 70 Vanichakarn P, Blair P, Wu C, Freedman JE, Chakrabarti S. Neutrophil CD40 enhances platelet-mediated inflammation. Thromb Res 2008; 122 (03) 346-358
  • 71 van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol 2000; 67 (01) 2-17
  • 72 Cabral-Marques O, França TT, Al-Sbiei A. , et al. CD40 ligand deficiency causes functional defects of peripheral neutrophils that are improved by exogenous IFN-γ. J Allergy Clin Immunol 2018; 142 (05) 1571-1588
  • 73 Yellin MJ, Brett J, Baum D. , et al. Functional interactions of T cells with endothelial cells: the role of CD40L-CD40-mediated signals. J Exp Med 1995; 182 (06) 1857-1864
  • 74 Hollenbaugh D, Mischel-Petty N, Edwards CP. , et al. Expression of functional CD40 by vascular endothelial cells. J Exp Med 1995; 182 (01) 33-40
  • 75 Häkkinen T, Karkola K, Ylä-Herttuala S. Macrophages, smooth muscle cells, endothelial cells, and T-cells express CD40 and CD40L in fatty streaks and more advanced human atherosclerotic lesions. Colocalization with epitopes of oxidized low-density lipoprotein, scavenger receptor, and CD16 (Fc gammaRIII). Virchows Arch 2000; 437 (04) 396-405
  • 76 Kapur R, Zufferey A, Boilard E, Semple JW. Nouvelle cuisine: platelets served with inflammation. J Immunol 2015; 194 (12) 5579-5587
  • 77 Vowinkel T, Wood KC, Stokes KY, Russell J, Krieglstein CF, Granger DN. Differential expression and regulation of murine CD40 in regional vascular beds. Am J Physiol Heart Circ Physiol 2006; 290 (02) H631-H639
  • 78 Wagner AH, Gebauer M, Pollok-Kopp B, Hecker M. Cytokine-inducible CD40 expression in human endothelial cells is mediated by interferon regulatory factor-1. Blood 2002; 99 (02) 520-525
  • 79 Geraldes P, Gagnon S, Hadjadj S. , et al. Estradiol blocks the induction of CD40 and CD40L expression on endothelial cells and prevents neutrophil adhesion: an ERalpha-mediated pathway. Cardiovasc Res 2006; 71 (03) 566-573
  • 80 Schönbeck U, Gerdes N, Varo N. , et al. Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells. Circulation 2002; 106 (23) 2888-2893
  • 81 André P, Nannizzi-Alaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 2002; 106 (08) 896-899
  • 82 Zirlik A, Bavendiek U, Libby P. , et al. TRAF-1, -2, -3, -5, and -6 are induced in atherosclerotic plaques and differentially mediate proinflammatory functions of CD40L in endothelial cells. Arterioscler Thromb Vasc Biol 2007; 27 (05) 1101-1107
  • 83 Léveillé C, Bouillon M, Guo W. , et al. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem 2007; 282 (08) 5143-5151
  • 84 Goerge T, Kleinerüschkamp F, Barg A. , et al. Microfluidic reveals generation of platelet-strings on tumor-activated endothelium. Thromb Haemost 2007; 98 (02) 283-286
  • 85 Kerk N, Strozyk EA, Pöppelmann B, Schneider SW. The mechanism of melanoma-associated thrombin activity and von Willebrand factor release from endothelial cells. J Invest Dermatol 2010; 130 (09) 2259-2268
  • 86 Rybaltowski M, Suzuki Y, Mogami H. , et al. In vivo imaging analysis of the interaction between unusually large von Willebrand factor multimers and platelets on the surface of vascular wall. Pflugers Arch 2011; 461 (06) 623-633
  • 87 Chauhan AK, Goerge T, Schneider SW, Wagner DD. Formation of platelet strings and microthrombi in the presence of ADAMTS-13 inhibitor does not require P-selectin or beta3 integrin. J Thromb Haemost 2007; 5 (03) 583-589
  • 88 Grässle S, Huck V, Pappelbaum KI. , et al. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler Thromb Vasc Biol 2014; 34 (07) 1382-1389
  • 89 Pircher J, Engelmann B, Massberg S, Schulz C. Platelet-neutrophil crosstalk in atherothrombosis. Thromb Haemost 2019; 119 (08) 1274-1282
  • 90 Zuchtriegel G, Uhl B, Hessenauer ME. , et al. Spatiotemporal expression dynamics of selectins govern the sequential extravasation of neutrophils and monocytes in the acute inflammatory response. Arterioscler Thromb Vasc Biol 2015; 35 (04) 899-910
  • 91 Nicolay JP, Thorn V, Daniel C. , et al. Cellular stress induces erythrocyte assembly on intravascular von Willebrand factor strings and promotes microangiopathy. Sci Rep 2018; 8 (01) 10945
  • 92 Portillo JA, Greene JA, Okenka G. , et al. CD40 promotes the development of early diabetic retinopathy in mice. Diabetologia 2014; 57 (10) 2222-2231
  • 93 Steven S, Dib M, Hausding M. , et al. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovasc Res 2018; 114 (02) 312-323