CC BY 4.0 · Pharmaceutical Fronts 2020; 02(01): e28-e54
DOI: 10.1055/s-0040-1701652
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Recent Advances of Pharmaceutical Process Chemistry and Its Innovation in China: Part 1

Pei Tang
1   Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
Biao Nie
2   HEC Pharm Group, HEC R&D Center, Guangdong, People's Republic of China
Jiuzhong Huang
2   HEC Pharm Group, HEC R&D Center, Guangdong, People's Republic of China
Yingjun Zhang
2   HEC Pharm Group, HEC R&D Center, Guangdong, People's Republic of China
3   The State Key Laboratory of Anti-Infective Drug Development, Guangdong, People's Republic of China
Ji Zhang
2   HEC Pharm Group, HEC R&D Center, Guangdong, People's Republic of China
3   The State Key Laboratory of Anti-Infective Drug Development, Guangdong, People's Republic of China
Fen-er Chen
1   Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
4   Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, People's Republic of China
› Author Affiliations
Further Information

Publication History

20 August 2019

25 September 2019

Publication Date:
31 March 2020 (online)


This review article summarizes recent developments and innovations in China's pharmaceutical process chemistry over the last several decades. Case studies of dozens of blockbuster drug processes are presented, including bulk drugs, such as the over-the-counter medicine biotin, demonstrating China's substantial effort to green its pharmaceutical processes. Owing to the increasing stringent environmental regulations, Chinese chemists have invented several cutting-edge and eco-friendly synthetic methods that are beneficial to environmental protection. Applied to large-scale industrial production, these processes have a greatly reduced environmental footprint, promoting the sustainable development of global economy and health.

  • References

  • 1 Tan HL. China's pharmaceutical industry is poised for major growth. Available at: . Accessed April 19, 2018
  • 2 Anastas PT, Warner JC. Green Chemistry: Theory and Practice. New York: Oxford Sciences Publications; 1998
  • 3 Dunn PJ, Wells AS, Williams MT. Green Chemistry in the Pharmaceutical Industry. Weinheim: Wiley-VCH; 2010
  • 4 (a) Cue BW, Zhang J. Green process chemistry in the pharmaceutical industry. Green Chem Lett Rev 2009;2(4):193–211. (b) Zhang J, Cue BW. Green process chemistry in the pharmaceutical industry: recent case studies. In: Zhang W, Cue BW, eds. Green Techniques for Organic Synthesis and Medicinal Chemistry. New Jersey: John Wiley & Sons, Inc.; 2012: 631–658
  • 5 Zhang W, Cue BW. Green Techniques for Organic Synthesis and Medicinal Chemistry. Weinheim: Wiley; 2018
  • 6 Kogl F, Tonnis B, Hoppe-Seyl Z. Concerning bio-problems. representations of crystallized Biotin in egg yolk. 20. Communication concerning plant developments materials. Physiol Chem 1936;242:43
  • 7 (a) De Clercq PJ. Biotin: a timeless challenge for total synthesis. Chem Rev 1997;97(6):1755–1792. (b) Seki M. Biological significance and development of practical synthesis of biotin. Med Res Rev 2006;26(4):434–482. (c) Eggersdorfer M, Laudert D, Létinois U, et al. One hundred years of vitamins—a success story of the natural sciences. Angew Chem Int Ed Engl 2012;51(52):12960–12990. (d) Zhong Z, Wu XF, Chen FE. Recent progresses in total synthesis of (+)-biotin. Youji Huaxue 2012;32:1792–1802 10.6023/cjoc1203041
  • 8 Harris SA, Wolf DE, Mozingo R, Folkers K. Synthetic biotin. Science 1943; 97 (2524): 447-448
  • 9 (a) Sternbach LH. Chapter VI - Biotin. Compr Biochem 1963;11:66–81. (b) Goldberg MW, Sternbach LH. Title is not available. US Pat. 2489232, Nov. 22, 1949 (Chem Abstr 1951;45:184). (c) Goldberg MW, Sternbach LH. Synthesis of biotin. US Pat. 2489235, Nov. 22, 1949 (Chem Abstr 1951;45:186a). (d) Goldberg MW, Sternbach LH. Debenzylation of benzylated imidazolido-thiophane compounds. US Pat. 2489238, Nov. 22, 1949 (Chem Abstr 1951;45:186g)
  • 10 Gerecke M, Zimmermann JP, Aschwanden W. Biotin synthesis. Preparation of (3aS, 6aR)-1,3-dibenzyl-tetrahydro-4H-thieno(3,4-d)imidazole-2,4(1H)-dione [in German]. Helv Chim Acta 1970; 53 (05) 991-999
  • 11 Chen FE, Ling XH, Lu YX, et al. Studies on the asymmetry total synthesis of d-biotin (II). Chem J Chin Univ 2001;22(7):1141–1146
  • 12 Matsuki K, Inoue H, Takeda M. Highly enantioselective reduction of meso-1,2-dicarboxylic anhydrides. Tetrahedron Lett 1993;34(7):1167–1170
  • 13 Chen FE, Huang YD, Fu H, et al. An efficient and enantioselective synthesis of d-biotin. Synthesis 2000;2000(14):2004–2008
  • 14 Shimizu M, Nishigaki Y, Wakabayash A. Stereocontrol in the reduction of meso-imides using oxazaborolidine, leading to a facile synthesis of (+)-deoxybiotin. Tetrahedron Lett 1999;40(50):8873–8876
  • 15 (a) Chen FE, Dai HF, Kuang YY, et al. Synthetic studies on d-biotin. Part 7: A practical asymmetric total synthesis of d-biotin via enantioselective reduction of meso-cyclic imide catalyzed by oxazborolidine. Tetrahedron Asymmetry 2003;14(23):3667–3672. (b) Chen FE, Yuan JL, Dai HF, et al. Synthetic studies on d-biotin, part 6: an expeditious and enantiocontrolled approach to the total synthesis of d-biotin via a polymer-supported chiral oxazaborolidine-catalyzed reduction of meso-cyclic imide strategy. Synthesis 2003;2003(14):2155–2160. (c) Chen FE, Jia HQ, Chen XX, et al. Synthetic studies on d-biotin, part 9. An improved asymmetric synthetic route to d-biotin via Hoffmann-Roche lactone-thiolactone approach. Chem Pharm Bull (Tokyo) 2005;53(7):743–746. (d) Chen FE. Process for the preparation of (3aS,4S,6aR)-1,3-dibenzyl-hexahydro-1H-thieno[3,4-d]imidazol-2(3H)-one-4-pentanoic acid (dibenzylbiotin). Chem Abstr 2005;143:248383
  • 16 (a) Spivey AC, Andrews BI. Catalysis of the asymmetricdesymmetrization of cyclic anhydrides by nucleophilic ring-opening with alcohols. Angew Chem Int Ed 2001;40(17):3131–3134. (b) Chen Y, McDaid P, Deng L. Asymmetric alcoholysis of cyclic anhydrides. Chem Rev 2003;103(8):2965–2984.(c) Atodiresei I, Schiffers I, BolmC. Stereoselective anhydride openings. Chem Rev 2007;107(12):5683–5712
  • 17 (a) Chen YG, Tian SK, Deng L. A highly enantioselective catalytic desymmetrization of cyclic anhydrides with modified cinchona alkaloids. J Am Chem Soc 2000;122(39):9542–9543. (b) Choi C, Tian SK, Deng L. A formal catalytic asymmetric synthesis of (+)-biotin with modified cinchona alkaloids. Synthesis 2001;2001(11):1737–1741
  • 18 Rho HS, Oh SH, Lee JW, Lee JY, Chin J, Song CE. Bifunctional organocatalyst for methanolytic desymmetrization of cyclic anhydrides: increasing enantioselectivity by catalyst dilution. Chem Commun (Camb) 2008; (10):1208–1210. (b) Oh SH, Rho HS, Lee JW, et al. A highly reactive and enantioselective bifunctional organocatalyst for the methanolytic desymmetrization of cyclic anhydrides: prevention of catalyst aggregation. Angew Chem Int Ed Engl 2008;47(41):7872–7875
  • 19 (a) Bolm C, Gerlach A, Dinter CL. Simple and highly enantioselective nonenzymatic ring opening of cyclic prochiral anhydrides. Synlett 1999;1999(2):195–196. (b) Bolm C, Schiffers I, Dinter CL, Gerlach A. Practical and highly enantioselective ring opening of cyclic meso-anhydrides mediated by cinchona alkaloids. J Org Chem 2000;65(21):6984–6991. (c) Bolm C, Schiffers I, Atodiresei I, Hackenberger CPR. An alkaloid-mediated desymmetrization of meso-anhydrides via a nucleophilic ring opening with benzyl alcohol and its application in the synthesis of highly enantiomerically enriched β-amino acids. Tetrahedron Asymmetry 2003;14(22):3455–3467
  • 20 Peschiulli A, Gun’ko Y, Connon SJ. Highly enantioselective desymmetrization of meso anhydrides by a bifunctional thiourea-based organocatalyst at low catalyst loadings and room temperature. J Org Chem 2008;73(6):2454–2457
  • 21 (a) Huang J, Xiong F, Chen FE. Total synthesis of (+)-biotin via a quinine-mediated asymmetric alcoholysis of meso-cyclic anhydride strategy. Tetrahedron Asymmetry 2008;19(12):1436–1443. (b) Dai HF, Chen WX, Zhao L, et al. Synthetic studies on (+)-biotin, Part 11: application of cinchona alkaloid-mediated asymmetric alcoholysis of meso-cyclic anhydride in the total synthesis of (+)-biotin. Adv Synth Catal 2008;350(10):1635–1641. (c) Wang SX, Chen FE. A novel cost-effective thiourea bifunctional organocatalyst for highly enantioselective alcoholysis of meso-cyclic anhydrides: enhanced enantioselectivity by configuration inversion. Adv Synth Catal 2009;351(4):547–552. (d) Xiong F, Chen XX, Chen FE. An improved asymmetric total synthesis of (+)-biotin via the enantioselective desymmetrization of a meso-cyclic anhydride mediated by cinchona alkaloid-based sulfonamide. Tetrahedron Asymmetry 2010;21(6):665–669. (e) Chen XX, Xiong F, Fu H, Liu ZQ, Chen FE. Synthetic studies on (+)-biotin, part 15: A chiral squaramide-mediated enantioselective alcoholysis approach toward the total synthesis of (+)-biotin. Chem Pharm Bull (Tokyo) 2011;59(4):488–491. (f) Xiong F, Xiong FJ, Chen WX, et al. Highly enantioselective methanolysis of meso-cyclic anhydride mediated by bifunctional thiourea cinchona alkaloid derivatives: access to asymmetric total synthesis of (+)-biotin. J Heterocycl Chem 2013;50(5):1078–1082. (g) Wang H, Yan L, Wu Y, Lu Y, Chen F. Asymmetric synthesis of vitamin D3 analogues: organocatalytic desymmetrization approach toward the A-ring precursor of calcifediol. Org Lett 2015;17(21):5452–5455
  • 22 Chen FE. Synthesis of d-biotin. CN Pat. 1374312, Oct. 16, 2002 (Chem Abstr 2003;140:181254)
  • 23 Shioiri T, Izawa K, Konoike T. Pharmaceutical Process Chemistry. Weinheim: Wiley-VCH; 2011
  • 24 Xiao YC, Chen FE. Chloramphenicol base in asymmetric synthesis. ChemCatChem 2019; 11: 2043
  • 25 (a) Wang X, Xu L, Xiong F, et al. A new cost-effective Ru-chloramphenicol base derivative catalyst for the asymmetric transfer hydrogenation/dynamic kinetic resolution of N-Boc alpha-amino-beta-ketoesters and its application to the synthesis of the chiral core of vancomycin. RSC Advances 2016;6(44):37701–37709. (b) Wang X, Xu L, Yan L, et al. Catalytic asymmetric transfer hydrogenation/dynamic kinetic resolution: an efficient synthesis of florfenicol. Tetrahedron 2016;72(14):1787–1793. (c) Wang H, Yan L, Xiong F, et al. New chloramphenicol Schiff base ligands for the titanium-mediated asymmetric aldol reaction of alpha, beta-unsaturated aldehydes with diketene: a short synthesis of atorvastatin calcium. RSC Advances 2016;6(79):75470–75477. (d) Yan L, Wang HF, Chen WX, et al. Development of bifunctional thiourea organocatalysts derived from a chloramphenicol base Scaffold and their use in the enantioselective alcoholysis of meso cyclic anhydrides. ChemCatChem 2016;8(13):2249–2253. (e) Yan L, Wang H, Xiong F, et al. Chloramphenicol base chemistry. Part 11: Chloramphenicol base-derived thiourea-catalyzed enantioselective Michael addition of malononitrile to α,β-unsaturated ketones. Tetrahedron Asymmetry 2017;28(7):921–929. (f) Wang H, Yan L, Wu Y, et al. Chloramphenicol base chemistry. Part 10(1): Asymmetric synthesis of alpha-hydroxy chiral alcohols via intramolecular Michael additions of gamma-hydroxy-alpha, beta-unsaturated enones with chloramphenicol base derived bifunctional urea organocatalysts. Tetrahedron 2017;73(19):2793–2800. (g) Yang HJ, Xiong FJ, Li J, et al. A family of novel bifunctional organocatalysts: Highly enantioselective alcoholysis of meso cyclic anhydrides and its application for synthesis of the key intermediate of P2X(7) receptor antagonists. Chin Chem Lett 2013;24(7):553–558. (h) Xu L, Han S, Yan L, Wang H, Peng H, Chen F. Novel amide-functionalized chloramphenicol base bifunctional organocatalysts for enantioselective alcoholysis of meso-cyclic anhydrides. Beilstein J Org Chem 2018;14:309–317. (i) Yang HJ, Xiong FJ, Chen XF, et al. Highly enantioselective thiolysis of prochiral cyclic anhydrides catalyzed by amino alcohol bifunctional organocatalysts and its application to the synthesis of pregabalin. Eur J Org Chem 2013;2013(21):4495–4498. (j) Wang Y, Huang G, Hu S, et al. Enantioselective beta-hydroxy thioesters formation via decarboxylative aldol reactions of malonic acid half thioesters with aldehydes promoted by chloramphenicol derived sulfonamides. Tetrahedron 2017;73(34):5055–5062. (k) Yan L, Huang G, Wang H, et al. Squaramide-linked chloramphenicol base hybrid catalysts for the asymmetric Michael addition of 2,3-dihydrobenzofuran-2-carboxylates to nitroolefins. Eur J Org Chem 2017;2018(1):99–103
  • 26 World Health Organization. World Malaria Report 2018. Available at: . Accessed November 19, 2018
  • 27 Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 2009; 7 (12) 864-874
  • 28 Paddon CJ, Westfall PJ, Pitera DJ. , et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013; 496 (7446): 528-532
  • 29 Liu DL, Zhang WB. The development on the research of industrial production of artemisinin. Chin Sci Bull 2017;62(18):1997–2006
  • 30 Hao HD, Li Y, Han WB, Wu Y. A hydrogen peroxide based access to qinghaosu (artemisinin). Org Lett 2011; 13 (16) 4212-4215
  • 31 Zhang W, Liu D, Yuan Q. Method for preparing artemisinin by artemisinic acid. Publication Number. WO Pat. 2013181913, Dec. 12, 2013
  • 32 Li J, Shen J, Xia C, Wang Y, Liu D, Zhang W. Asymmetric hydrogenation of α-substituted acrylic acids catalyzed by a ruthenocenyl phosphino-oxazoline-ruthenium complex. Org Lett 2016; 18 (09) 2122-2125
  • 33 (a) ElSohly HN, Croom EM, El-Feraly FS, et al. A large-scale extraction technique of artemisinin from Artemisia annua. J Nat Prod 1990;53(6):1560–1564. (b) Covello PS. Making artemisinin. Phytochemistry 2008;69(17):2881–2885
  • 34 D'Incalci M, Galmarini CM. A review of trabectedin (ET-743): a unique mechanism of action. Mol Cancer Ther 2010; 9 (08) 2157-2163
  • 35 Cuevas C, Francesch A. Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep 2009; 26 (03) 322-337
  • 36 Zheng X, Schwarz K, Furuuchi T. , et al. Making V(D)J rearrangement visible: quantification of recombination efficiency in real time at the single cell level. J Immunol Methods 2006; 315 (1–2): 133-143
  • 37 Kawagishi F, Toma T, Inui T, Yokoshima S, Fukuyama T. Total synthesis of ecteinascidin 743. J Am Chem Soc 2013;135(37):13684–13687
  • 38 Corey EJ, Gin DY, Kania RS. Enantioselective total synthesis of ecteinascidin 743. J Am Chem Soc 1996;118(38):9202–9203
  • 39 Chen J, Chen X, Bois-Choussy M, Zhu J. Total synthesis of ecteinascidin 743. J Am Chem Soc 2006;128(1):87–89
  • 40 He W, Zhang Z, Ma D. A scalable total synthesis of the antitumor agents Et-743 and lurbinectedin. Angew Chem Int Ed Engl 2019;58(12):3972–3975
  • 41 (a) Ma D, Zhang Y, Yao J, et al. Accelerating effect induced by the structure of α-amino acid in the Copper-catalyzed coupling reaction of aryl halides with α-amino acids: Synthesis of benzolactam-V8. J Am Chem Soc 1998;120(48):12459–12467. (b) Ma D, Cai Q, Zhang H. Mild method for Ullmann coupling reaction of amines and aryl halides. Org Lett 2003;5(14):2453–2455. (c) Pan X, Cai Q, Ma D. CuI/N,N-dimethylglycine-catalyzed coupling of vinyl halides with amides or carbamates. Org Lett 2004;6(11):1809–1812
  • 42 (a) Bhunia S, Pawar GG, Kumar SV, et al. Selected copper-based reactions for C–N, C–O, C–S, and C–C bond formation. Angew Chem Int Ed 2017;56(51):16136–16179. (b) Ma D, Cai Q. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Acc Chem Res 2008;41(11):1450–1460
  • 43 De Lange B, Hyett DJ, Maas PJ, et al. Asymmetric synthesis of (S)-2-indolinecarboxylic acid by combining biocatalysis and homogeneous catalysis. ChemCatChem 2011;3(2):289–292
  • 44 Zhao J, Niu S, Jiang X. , et al. A class of amide ligands enable Cu-catalyzed coupling of (hetero)aryl halides with sulfinic acid salts under mild conditions. J Org Chem 2018; 83 (12) 6589-6598
  • 45 Enache LA, Kennedy I, Sullins DW, et al. Development of a scalable synthetic process for DG-051B, a First-in-Class inhibitior of LTA4H. Org Process Res Dev 2009;13(6):1177–1184
  • 46 Ribecai A, Bacchi S, Delpogetto M, et al. Identification of a manufacturing route of novel CRF-1 antagonists containing a 2,3-dihydro-1H-pyrrolo[2,3-b]pyridine moiety. Org Process Res Dev 2010;14(4):895–901
  • 47 Ma D, Niu S, Zhao J, et al. A new class of amide ligands enable Cu-catalyzed coupling of sodium methanesulfinate with (hetero)aryl chlorides. Chin J Chem 2017;35(11):1661–1664
  • 48 Fan M, Zhou W, Jiang Y, Ma D. CuI/oxalamide catalyzed couplings of (hetero)aryl chlorides and phenols for diaryl ether formation. Angew Chem Int Ed Engl 2016;55(21):6211–6215
  • 49 DiRocco DA, Ji Y, Sherer EC, et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 2017;356(6336):426–430
  • 50 Liu S, Zhang ZF, Xie F, et al. First catalytic enantioselective synthesis of P-stereogenic phosphoramides via kinetic resolution promoted by a chiral bicyclic imidazole nucleophilic catalyst. Tetrahedron Asymmetry 2012;23(5):329–332
  • 51 Zhang ZF, Wang M, Xie F, et al. Chiral bicyclic imidazole nucleophilic catalysts: design, synthesis, and application to the kinetic resolution of arylalkylcarbinols. Adv Synth Catal 2014;356(14–15):3164–3170
  • 52 (a) Zhang Z, Xie F, Jia J, Zhang W. Chiral bicycle imidazole nucleophilic catalysts: rational design, facile synthesis, and successful application in asymmetric Steglich rearrangement. J Am Chem Soc 2010;132(45):15939–15941. (b) Wang M, Zhang Z, Liu S, Xie F, Zhang W. Enantioselective Black rearrangement catalyzed by chiral bicyclic imidazole. Chem Commun (Camb) 2014;50(10):1227–1230
  • 53 Xie JH, Zhou QL. New progress and prospects of transition metal-catalyzed asymmetric hydrogenation. Acta Chimi Sin 2012;70(13):1427–1438
  • 54 Liu G, Liu X, Cai Z, Jiao G, Xu G, Tang W. Design of phosphorus ligands with deep chiral pockets: practical synthesis of chiral β-arylamines by asymmetric hydrogenation. Angew Chem Int Ed Engl 2013;52(15):4235–4238
  • 55 Ge Y, Han Z, Wang Z, Ding K. Ir-catalyzed double asymmetric hydrogenation of 3,6-dialkylidene-2,5-diketopiperazines for enantioselective synthesis of cyclic dipeptides. J Am Chem Soc 2019;141(22):8981–8988
  • 56 Ojima I. Catalytic Asymmetric Synthesis. 3rd ed. New Jersey: John Wiley & Sons, Inc.; 2010
  • 57 (a) Hu AG, Fu Y, Xie JH, et al. Monodentate chiral spiro phosphoramidites: efficient ligands for Rhodium-catalyzed enantioselective hydrogenation of enamides. Angew Chem Int Ed 2002;41(13):2348–2350. (b) Liu B, Zhu SF, Zhang W, Chen C, Zhou QL. Highly enantioselective insertion of carbenoids into N-H bonds catalyzed by copper complexes of chiral spiro bisoxazolines. J Am Chem Soc 2007;129(18):5834–5835
  • 58 Yan PC, Zhang XY, Hu XW, et al. First asymmetric synthesis of Silodosin through catalytic hydrogenation by using Ir-SIPHOX catalysts. Tetrahedron Lett 2013;54(11):1449–1451
  • 59 Liu D, Gao W, Wang C, Zhang X. Practical synthesis of enantiopure γ-amino alcohols by rhodium-catalyzed asymmetric hydrogenation of β-secondary-amino ketones. Angew Chem Int Ed Engl 2005;44(11):1687–1689 (b) Gao M, Meng JJ, Lv H, Zhang X. Highly regio- and enantioselective synthesis of γ,δ-unsaturated amido esters by catalytic hydrogenation of conjugated enamides. Angew Chem Int Ed Engl 2015;54(6):1885–1887
  • 60 Ahmad S, Sutherland A. Stereoselective synthesis of hydroxylated 3-aminoazepanes using a multi-bond forming, three-step tandem process. Org Biomol Chem 2012; 10 (41) 8251-8259
  • 61 Yang ZZ, Zhang L, Jiao HR, et al. A concise and highly efficient synthesis of praziquantel as an anthelmintic drug. Heterocycles 2016;92(11):1983–1993
  • 62 (a) Botteghi C, Schionato A. Asymmetrische katalysen: XLVI. Enantioselektive Hydrosilylierung von Ketonen mit [Rh(COD)Cl]2 und optisch aktiven Stickstoff-Liganden. J Organomet Chem 1989;370(1–3):17–31. (b) Chong HS, Garmestani K, Bryant LH Jr, Brechbiel MW. Synthesis of DTPA analogues derived from piperidine and azepane: potential contrast enhancement agents for magnetic resonance imaging. J Org Chem 2001;66(23):7745–7750. (c) Harit VK, Ramesh NG. A chiron approach to diversity-oriented synthesis of aminocyclitols, (-)-conduramine F-4 and polyhydroxyaminoazepanes from a common precursor. J Org Chem 2016;81(23):11574–11586
  • 63 (a) Monterde MI, Nazabadioko S, Rebolledo F, et al. Chemoenzymatic synthesis of azacycloalkan-3-ols. Tetrahedron: Asymmetry 1999;10(17):3449–3455. (d) Kono M, Harada S, Hamada Y, et al. Formal amide insertion strategy for the synthesis of anatoxin–a using rhodium catalysis. Tetrahedron 2016;72(10):1395–1399
  • 64 (a) Feng Y, Luo Z, Sun G, et al. Development of an efficient and scalable biocatalytic route to (3R)-3-aminoazepane: a pharmaceutically important intermediate. Org Process Res Dev 2017;21(4):648–654. (b) Feng Y, Wang Z, Luo Z, et al. Further optimization of a scalable biocatalytic route to (3R)-N-Boc-3-aminoazepane with immobilized ω-transaminase. Org Process Res Dev 2019;23(3):355–360
  • 65 Xu G, Senanayake CH, Tang W. P-Chiral phosphorus ligands based on a 2,3-dihydrobenzo[ d][1,3]oxaphosphole motif for asymmetric catalysis. Acc Chem Res 2019; 52 (04) 1101-1112
  • 66 Rao X, Li N, Bai H, Dai C, Wang Z, Tang W. Efficient synthesis of (−)-corynoline by enantioselective palladium-catalyzed α-arylation with sterically hindered substrates. Angew Chem Int Ed Engl 2018;57(38):12328–12332
  • 67 Fu W, Tang W. Chiral monophosphorus ligands for asymmetric catalytic reactions. ACS Catal 2016;6(8):4814–4858
  • 68 Wang X, Han Z, Wang Z, Ding K. Catalytic asymmetric synthesis of aromatic spiroketals by spinphox/iridium(I)-catalyzed hydrogenation and spiroketalization of α,α′-bis(2-hydroxyarylidene) ketones. Angew Chem Int Ed Engl 2012;51(4):936–940
  • 69 Zheng Z, Cao Y, Chong Q. , et al. Chiral cyclohexyl-fused spirobiindanes: practical synthesis, ligand development, and asymmetric catalysis. J Am Chem Soc 2018; 140 (32) 10374-10381
  • 70 Wei XF, Shimizu Y, Kanai M. An expeditious synthesis of sialic acid derivatives by copper(I)-catalyzed stereodivergent propargylation of unprotected aldoses. ACS Cent Sci 2016; 2 (01) 21-26
  • 71 Kobayashi S, Ishitani H. Catalytic enantioselective addition to imines. Chem Rev 1999; 99 (05) 1069-1094
  • 72 Tang W, Zhang X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem Rev 2003; 103 (08) 3029-3070
  • 73 (a) Colyer JT, Andersen NG, Tedrow JS, Soukup TS, Faul MM. Reversal of diastereofacial selectivity in hydride reductions of N-tert-butanesulfinyl imines. J Org Chem 2006;71(18):6859–6862. (b) Guijarro D, Pablo O, Yus M. Asymmetric synthesis of chiral primary amines by transfer hydrogenation of N-(tert-butanesulfinyl)ketimines. J Org Chem 2010;75(15):5265–5270. (c) Xiao X, Wang H, Huang Z, Yang J, Bian X, Qin Y. Selective diethylzinc reduction of imines in the presence of ketones catalyzed by Ni(acac)2. Org Lett 2006;8(1):139–142
  • 74 Abe H, Amii H, Uneyama K. Pd-catalyzed asymmetric hydrogenation of alpha-fluorinated iminoesters in fluorinated alcohol: a new and catalytic enantioselective synthesis of fluoro alpha-amino acid derivatives. Org Lett 2001; 3 (03) 313-315
  • 75 Yang Q, Shang G, Gao W, Deng J, Zhang X. A highly enantioselective, Pd-TangPhos-catalyzed hydrogenation of N-tosylimines. Angew Chem Int Ed Engl 2006;45(23):3832–3835
  • 76 Zhao X, Xu H, Huang X, Zhou JS. Asymmetric stepwise reductive amination of sulfonamides, sulfamates, and a phosphinamide by nickel catalysis. Angew Chem Int Ed Engl 2019;58(1):292–296
  • 77 Li B, Chen J, Zhang Z, Gridnev ID, Zhang W. Nickel-catalyzed asymmetric hydrogenation of N-sulfonyl imines. Angew Chem Int Ed Engl 2019;58(22):7329–7334
  • 78 (a) Endo A, Kuroda M, Tsujita YJ. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by penicilium citrinum. Antibotics 1976;29(12):1346–1348. (b) Gaw A, Packard CJ, Shepherd J. Statins: The HMG-CoA Reductase Inhibitors in Perspective, 2nd ed. London: CRC Press; 2004.(c) Tobert JA. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2003;2(7):517–526
  • 79 (a) Li JJ, Johnson DS, Sliskovic DR, Roth BD, Eds. Contemporary Drug Synthesis. New-Jersey: Wiley-Interscience; 2004. (b) Johnson DS, Li JJ. The Art of Drug Synthesis. New York:Wiley;2007. (c) Časar Z. Recent progress in the synthesis of super-statins. SynthHeterocycl Contemporary MedChem 2016;44:113–185. (d) Chen Y, Chen C, Wu X. Dicarbonyl reduction by single enzyme for the preparation of chiral diols. Chem Soc Rev 2012;41(5):1742–1753
  • 80 Patel JM. Biocatalytic synthesis of atorvastatin intermediates. J Mol Catal, B Enzym 2009;61(3–4):123–128
  • 81 (a) Miyachi N, Suzuki M, Ohara Y, et al. Syntheses of HMG-CoA reductase inhibitors. Synth Org Chem Jpn 1995;53(3):186–196. (b) Časar Z. Historic overview and recent advances in the synthesis of super-statins. Curr Org Chem 2010;14(8):816–845. (c) Andrushko N, Andrushko V, Tararov V, Korostylev A, König G, Börner A. Highly stereoselective hydrogenations--as key-steps in the total synthesis of statins. Chirality 2010;22(5):534–541. (d) WuY. Xiong FJ, Chen FE. Stereoselective synthesis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. Tetrahedron 2015;71(45):8487–8510
  • 82 (a) Butler DE, Deering CF, Millar A, et al. Improved process for (trans)-6-(2-(substituted-pyrrol-1-yl)alkyl)pyran-2-one inhibitors of cholesterol synthesis. EP Pat. 19890903348, Oct. 2, 1991. (b) Brower PL, Butler DE, Deering CF, et al. The synthesis of (4R-cis)-1,1-dimethylethyl 6-cyanomethyl-2,2-dimethyl-1,3-dioxane-4-acetate, a key intermediate for the preparation of CI-981, a highly potent, tissue selective inhibitor of HMG-CoA reductase. Tetrahedron Lett 1992;33(17):2279–2282. (c) Baumann KL, Butler DE, Deering CF, et al. The convergent synthesis of CI-981, an optically active, highly potent, tissue selective inhibitor of HMG-CoA reductase. Tetrahedron Lett 1992;33(17):2283–2284. (d) Shin H, Choi BS, Lee KK, et al. Efficient activation of zinc: application of the Blaise reaction to an expedient synthesis of a statin intermediate. Synthesis 2004;2004(16):2629–2632. (e) Sun R, Zhang FQ, Du TJ, et al. Method for preparing (4R-cis)-6-substituted-2,2-dimethyl-1,3-dioxane-4-tert-butyl acetate. CN Pat. 102180862, Sept. 14, 2011 (Chem Abstr 2011;155:457681)
  • 83 (a) Chen FE, Yao J, Xiong FJ, et al. Trivalent cobalt Salen catalyst, synthesis method as well as application of trivalent cobalt Salen catalyst to resolution of terminal epoxides. CN Pat. 104801343, Jul. 29, 2015 (Chem Abstr 2015;163:289074). (b) Xiong F, Wang H, Yan L, et al. Diastereoselective synthesis of pitavastatin calcium via bismuth-catalyzed two-component hemiacetal/oxa-Michael addition reaction. Org Biomol Chem 2015;13(38):9813–9819. (c) Chen XF, Xiong FJ, Zheng C, et al. Synthetic studies on statins. Part 3: A facile synthesis of rosuvastatin calcium through catalytic enantioselective allylation strategy. Tetrahedron 2014;70(35):5794–5799. (d) Chen WQ, Xiong FJ, Liu Q, et al. Substrate stereocontrol in bromine-induced intermolecular cyclization: asymmetric synthesis of pitavastatin calcium. Tetrahedron 2015;71(29):4730–4737. (e) Xiong F, Wang H, Yan L, et al. Stereocontrolled synthesis of rosuvastatin calcium via iodine chloride-induced intramolecular cyclization. Org Biomol Chem 2016;14(4):1363–1369. (f) Wu Y, Liu M, Huang HQ, et al. Asymmetric synthesis of atorvastatin calcium through intramolecular oxidative oxygen-nucleophilic bromocyclization. Eur J Org Chem 2017;2017(25):3681–3688. (g) Chen FE, Xiong FJ, Wu Y, et al. Preparation method of 2-((4R,6S)-6-bromomethyl-2,2-dimethyl-1,3-dioxane-4-yl)acetate. WO Pat. 2016074324A1, May. 19, 2016. Chem Abstr 2016;164:602165. (h) Chen FE, Xiong FJ, Wu Y, et al. Preparation method of 2-((4R,6S)-6-bromoethyl-2,2-dimethyl-1,3-dioxyhexacyclo-4-yl)acetate. CN Pat. 104356109A, Feb. 18, 2015. Chem Abstr 2015;162:353216. (i) Chen FE, Xiong FJ, Li J, et al. Method for preparing rosuvastatin sodium. US Pat. 9850213B2, Dec. 16, 2017 (Chem Abstr 2014;160:341276)
  • 84 (a) Chen X, Xiong F, Chen W, He Q, Chen F. Asymmetric synthesis of the HMG-CoA reductase inhibitor atorvastatin calcium: an organocatalytic anhydride desymmetrization and cyanide-free side chain elongation approach. J Org Chem 2014;79(6):2723–2728. (b) Chen FE, Chen XF. Method for synthesizing (3R,5R)-3,5-dihydroxy-6-cyanohexanoate. CN Pat. 103145584A, Jun. 12, 2013. Chem Abstr 2013;159:133729
  • 85 (a) Johnson DV, Pöchlauer P, Griengl H. Process for selective reduction. US Pat. 6355822B1, Mar. 12, 2002 (Chem Abstr 2002;136:232059). (b) Yatagai M, Ohnuki T. Asymmetric reduction of functionalized ketones with a sodium borohydride-(L)-tartaric acid system. J Chem Soc, Perkin Trans 1 1990; (6):1826–1828
  • 86 (a) Huang G, Liu M, Xiong F, et al. Chiral syn-1,3-diol derivatives via a one-pot diastereoselective carboxylation/bromocyclization of homoallylic alcohols. iScience 2018;9:513–520. (b) Chen FR, Huang GX, Wu Y, et al. Preparation method for (4S,6R)-4-bromomethyl-6-substituted methyl-2-oxo-1,3-dioxane. CN Pat. 106588865A, Apr. 26, 2017. Chem Abstr 2017;166:515777. (c) Chen FE, Huang ZD, Meng G, et al. Preparation method for (R)-3-hydroxyl-5-hexenoate. US Pat. 20180340196A1, Nov. 29, 2018 (Chem Abstr 2017;167:378668)
  • 87 (a) Chen FE, Huang ZD, Peng HH, et al. Method for preparing (R)-3-hydroxy-5-hexenoic acid ester. CN Pat. 107119081A, Sept. 1, 2017. Chem Abstr 2017;167:378668. (b) Chen FE, Huang ZD, Meng G, et al. Engineered bacterial strain and application of same to preparation of (R)-3-hydroxy-5-hexenoate. CN Pat. 108359626A, Aug. 3, 2018. Chem Abstr 2018;169:261711