CC BY 4.0 · Pharmaceutical Fronts 2020; 02(01): e11-e22
DOI: 10.1055/s-0040-1701435
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Current Advances in Sustained Release Microneedles

Guangsheng Du
1   Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China
,
Xun Sun
1   Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China
› Author Affiliations
Funding We acknowledge the financial support of the National Natural Science Foundation of China (No. 81961130395), Science and Technology Major Project of Sichuan Province (No. 2018SZDZX0018), and Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System (CARS-SVDIP).
Further Information

Publication History

14 November 2019

04 December 2019

Publication Date:
25 February 2020 (online)

Abstract

Microneedles have been extensively investigated for intradermal delivery of drugs and vaccines due to advantages including high skin delivery efficiency, improved patient compliance, and potential for self-administration. However, traditional microneedles cannot regulate the release kinetics of payloads, limiting therapeutic utility of the biotherapeutics. Recently, several types of microneedles with sustained release properties, including slow-dissolving microneedles made of hydrophilic polymers, degradable microneedles made of hydrophobic polymers, and bioresponsive microneedles made of bioresponsive polymers, have been developed and investigated for intradermal delivery of the biotherapeutics, aiming for improving their therapeutic potency, reducing side effects and administration frequency, and further improving patient compliance. In this review, we introduced different types of microneedles that have been designed for sustained release of the payloads, summarized various applications of these microneedles, and discussed the future prospects of this technology.

 
  • References

  • 1 van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 2012; 161 (02) 645-655
  • 2 Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64 (14) 1547-1568
  • 3 McAllister DV, Wang PM, Davis SP. , et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A 2003; 100 (24) 13755-13760
  • 4 Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008; 26 (11) 1261-1268
  • 5 Rouphael NG, Paine M, Mosley R. , et al; TIV-MNP 2015 Study Group. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 2017; 390 (10095); 649-658
  • 6 Chu LY, Ye L, Dong K, Compans RW, Yang C, Prausnitz MR. Enhanced stability of inactivated influenza vaccine encapsulated in dissolving microneedle patches. Pharm Res 2016; 33 (04) 868-878
  • 7 Mistilis MJ, Bommarius AS, Prausnitz MR. Development of a thermostable microneedle patch for influenza vaccination. J Pharm Sci 2015; 104 (02) 740-749
  • 8 Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv 2014; 11 (03) 393-407
  • 9 Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release 2010; 141 (03) 277-299
  • 10 Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K. Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci 2006; 29 (01) 82-88
  • 11 Lee JW, Choi SO, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small 2011; 7 (04) 531-539
  • 12 Indermun S, Luttge R, Choonara YE. , et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release 2014; 185: 130-138
  • 13 Larrañeta E, McCrudden MT, Courtenay AJ, Donnelly RF. Microneedles: a new frontier in nanomedicine delivery. Pharm Res 2016; 33 (05) 1055-1073
  • 14 Tuan-Mahmood TM, McCrudden MT, Torrisi BM. , et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci 2013; 50 (05) 623-637
  • 15 Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 2008; 20 (05) 933-938
  • 16 Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 2005; 104 (01) 51-66
  • 17 Lee K, Lee CY, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 2011; 32 (11) 3134-3140
  • 18 Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008; 29 (13) 2113-2124
  • 19 Lee JW, Han MR, Park JH. Polymer microneedles for transdermal drug delivery. J Drug Target 2013; 21 (03) 211-223
  • 20 Leone M, Mönkäre J, Bouwstra JA, Kersten G. Dissolving microneedle patches for dermal vaccination. Pharm Res 2017; 34 (11) 2223-2240
  • 21 Herwadkar A, Banga AK. Peptide and protein transdermal drug delivery. Drug Discov Today Technol 2012; 9 (02) e71-e174
  • 22 Wu F, Yang S, Yuan W, Jin T. Challenges and strategies in developing microneedle patches for transdermal delivery of protein and peptide therapeutics. Curr Pharm Biotechnol 2012; 13 (07) 1292-1298
  • 23 Matsuo K, Yokota Y, Zhai Y. , et al. A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens. J Control Release 2012; 161 (01) 10-17
  • 24 Hiraishi Y, Nakagawa T, Quan YS. , et al. Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system. Int J Pharm 2013; 441 (1–2): 570-579
  • 25 Guo L, Chen J, Qiu Y, Zhang S, Xu B, Gao Y. Enhanced transcutaneous immunization via dissolving microneedle array loaded with liposome encapsulated antigen and adjuvant. Int J Pharm 2013; 447 (1–2): 22-30
  • 26 Sullivan SP, Koutsonanos DG, Del Pilar Martin M. , et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med 2010; 16 (08) 915-920
  • 27 Edens C, Dybdahl-Sissoko NC, Weldon WC, Oberste MS, Prausnitz MR. Inactivated polio vaccination using a microneedle patch is immunogenic in the rhesus macaque. Vaccine 2015; 33 (37) 4683-4690
  • 28 Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 2015; 33 (37) 4712-4718
  • 29 Vassilieva EV, Kalluri H, McAllister D. , et al. Improved immunogenicity of individual influenza vaccine components delivered with a novel dissolving microneedle patch stable at room temperature. Drug Deliv Transl Res 2015; 5 (04) 360-371
  • 30 Quinn HL, Kearney MC, Courtenay AJ, McCrudden MT, Donnelly RF. The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv 2014; 11 (11) 1769-1780
  • 31 Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK. Microneedle-based vaccines. In: Compans RW, Orenstein WA. , eds. Vaccines for Pandemic Influenza. Berlin: Springer; 2009: 369-393
  • 32 Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 2010; 17 (04) 187-207
  • 33 Li G, Badkar A, Nema S, Kolli CS, Banga AK. In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int J Pharm 2009; 368 (1–2): 109-115
  • 34 Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol 2005; 23 (09) 1073-1078
  • 35 Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 2016; 116 (04) 2602-2663
  • 36 Hong X, Wei L, Wu F. , et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Devel Ther 2013; 7: 945-952
  • 37 Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z. Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev 2018; 127: 106-118
  • 38 Chen MC, Huang SF, Lai KY, Ling MH. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 2013; 34 (12) 3077-3086
  • 39 Xie Y, Xu B, Gao Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine 2005; 1 (02) 184-190
  • 40 Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release 2011; 149 (03) 242-249
  • 41 Lee K, Jung H. Drawing lithography for microneedles: a review of fundamentals and biomedical applications. Biomaterials 2012; 33 (30) 7309-7326
  • 42 Moga KA, Bickford LR, Geil RD. , et al. Rapidly-dissolvable microneedle patches via a highly scalable and reproducible soft lithography approach. Adv Mater 2013; 25 (36) 5060-5066
  • 43 Kim JD, Kim M, Yang H, Lee K, Jung H. Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release 2013; 170 (03) 430-436
  • 44 Wang W, Nema S, Teagarden D. Protein aggregation--pathways and influencing factors. Int J Pharm 2010; 390 (02) 89-99
  • 45 Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol 2014; 11 (02) 99-109
  • 46 Zhu G, Mallery SR, Schwendeman SP. Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide). Nat Biotechnol 2000; 18 (01) 52-57
  • 47 Rothe A, Power BE, Hudson PJ. Therapeutic advances in rheumatology with the use of recombinant proteins. Nat Clin Pract Rheumatol 2008; 4 (11) 605-614
  • 48 Vora LK, Donnelly RF, Larrañeta E, González-Vázquez P, Thakur RRS, Vavia PR. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: proof of concept. J Control Release 2017; 265: 93-101
  • 49 Ke CJ, Lin YJ, Hu YC. , et al. Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. Biomaterials 2012; 33 (20) 5156-5165
  • 50 Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res 2006; 23 (05) 1008-1019
  • 51 Palakurthi NK, Correa ZM, Augsburger JJ, Banerjee RK. Toxicity of a biodegradable microneedle implant loaded with methotrexate as a sustained release device in normal rabbit eye: a pilot study. J Ocul Pharmacol Ther 2011; 27 (02) 151-156
  • 52 Kim M, Jung B, Park JH. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 2012; 33 (02) 668-678
  • 53 Demuth PC, Garcia-Beltran WF, Ai-Ling ML, Hammond PT, Irvine DJ. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination. Adv Funct Mater 2013; 23 (02) 161-172
  • 54 Li W, Terry RN, Tang J, Feng MR, Schwendeman SP, Prausnitz MR. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat Biomed Eng 2019; 3 (03) 220-229
  • 55 Donnelly RF, Morrow DI, Singh TR. , et al. Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm 2009; 35 (10) 1242-1254
  • 56 DeMuth PC, Min Y, Irvine DJ, Hammond PT. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv Healthc Mater 2014; 3 (01) 47-58
  • 57 Wang C, Ye Y, Hochu GM, Sadeghifar H, Gu Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett 2016; 16 (04) 2334-2340
  • 58 Chen BZ, Ashfaq M, Zhu DD, Zhang XP, Guo XD. Controlled delivery of insulin using rapidly separating microneedles fabricated from genipin-crosslinked gelatin. Macromol Rapid Commun 2018; 39 (20) e1800075
  • 59 Lee J, Park SH, Seo IH, Lee KJ, Ryu W. Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. Eur J Pharm Biopharm 2015; 94: 11-19
  • 60 Tsioris K, Raja WK, Pritchard EM. , et al. Fabrication of silk microneedles for controlled-release drug delivery. Adv Funct Mater 2012; 22 (02) 330-335
  • 61 Ye Y, Wang C, Zhang X. , et al. A melanin-mediated cancer immunotherapy patch. Sci Immunol 2017; 2 (17) eaan5692
  • 62 DeMuth PC, Moon JJ, Suh H, Hammond PT, Irvine DJ. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 2012; 6 (09) 8041-8051
  • 63 Di J, Yao S, Ye Y. , et al. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano 2015; 9 (09) 9407-9415
  • 64 Ye Y, Yu J, Wang C. , et al. Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv Mater 2016; 28 (16) 3115-3121
  • 65 Ye Y, Wang J, Hu Q. , et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 2016; 10 (09) 8956-8963
  • 66 Wang J, Ye Y, Yu J. , et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano 2018; 12 (03) 2466-2473
  • 67 Chen W, Tian R, Xu C. , et al. Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Commun 2017; 8 (01) 1777
  • 68 Koh LD, Cheng Y, Teng CP. , et al. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 2015; 46: 86-110
  • 69 Liu Q, Liu H, Fan Y. Preparation of silk fibroin carriers for controlled release. Microsc Res Tech 2017; 80 (03) 312-320
  • 70 You X, Chang JH, Ju BK. , et al. Rapidly dissolving fibroin microneedles for transdermal drug delivery. Mater Sci Eng C 2011; 31 (08) 1632-1636
  • 71 Jin HJ, Karageorgiou JPV, Kim UJ. , et al. Water-stable silk films with reduced β-sheet content. Adv Funct Mater 2005; 15 (08) 1241-1247
  • 72 Lu Q, Hu X, Wang X. , et al. Water-insoluble silk films with silk I structure. Acta Biomater 2010; 6 (04) 1380-1387
  • 73 Hofmann S, Foo CT, Rossetti F. , et al. Silk fibroin as an organic polymer for controlled drug delivery. J Control Release 2006; 111 (1–2): 219-227
  • 74 Yu J, Zhang Y, Kahkoska AR, Gu Z. Bioresponsive transcutaneous patches. Curr Opin Biotechnol 2017; 48: 28-32
  • 75 Chen G, Yu J, Gu Z. Glucose-responsive microneedle patches for diabetes treatment. J Diabetes Sci Technol 2019; 13 (01) 41-48
  • 76 Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology 2011; 9: 55
  • 77 Taghizadeh B, Taranejoo S, Monemian SA. , et al. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 2015; 22 (02) 145-155
  • 78 Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12 (11) 991-1003
  • 79 Yu J, Zhang Y, Ye Y. , et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci U S A 2015; 112 (27) 8260-8265
  • 80 Zhang Y, Wang J, Yu J. , et al. Bioresponsive microneedles with a sheath structure for h2 o2 and ph cascade-triggered insulin delivery. Small 2018; 14 (14) e1704181
  • 81 Romani N, Flacher V, Tripp CH, Sparber F, Ebner S, Stoitzner P. Targeting skin dendritic cells to improve intradermal vaccination. Curr Top Microbiol Immunol 2012; 351: 113-138
  • 82 Sparber F, Tripp CH, Hermann M, Romani N, Stoitzner P. Langerhans cells and dermal dendritic cells capture protein antigens in the skin: possible targets for vaccination through the skin. Immunobiology 2010; 215 (9–10): 770-779
  • 83 Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR. Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol 2012; 351: 77-112
  • 84 Segura E, Villadangos JA. Antigen presentation by dendritic cells in vivo. Curr Opin Immunol 2009; 21 (01) 105-110
  • 85 Zaba LC, Krueger JG, Lowes MA. Resident and “inflammatory” dendritic cells in human skin. J Invest Dermatol 2009; 129 (02) 302-308
  • 86 Quan FS, Kim YC, Compans RW, Prausnitz MR, Kang SM. Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. J Control Release 2010; 147 (03) 326-332
  • 87 Song JM, Kim YC, , O E, Compans RW, Prausnitz MR, Kang SM. DNA vaccination in the skin using microneedles improves protection against influenza. Mol Ther 2012; 20 (07) 1472-1480
  • 88 Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 2000; 6 (12) 1403-1406
  • 89 Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med 2002; 8 (04) 415-419
  • 90 Kim YC, Quan FS, Yoo DG, Compans RW, Kang SM, Prausnitz MR. Improved influenza vaccination in the skin using vaccine coated microneedles. Vaccine 2009; 27 (49) 6932-6938
  • 91 Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 2004; 4 (03) 211-222
  • 92 Lin WH, Kouyos RD, Adams RJ, Grenfell BT, Griffin DE. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc Natl Acad Sci U S A 2012; 109 (37) 14989-14994
  • 93 Simon ID, Publicover J, Rose JK. Replication and propagation of attenuated vesicular stomatitis virus vectors in vivo: vector spread correlates with induction of immune responses and persistence of genomic RNA. J Virol 2007; 81 (04) 2078-2082
  • 94 Tam HH, Melo MB, Kang M. , et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc Natl Acad Sci U S A 2016; 113 (43) E6639-E6648
  • 95 Zhao L, Seth A, Wibowo N. , et al. Nanoparticle vaccines. Vaccine 2014; 32 (03) 327-337
  • 96 Demento SL, Cui W, Criscione JM. , et al. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 2012; 33 (19) 4957-4964
  • 97 Moon JJ, Suh H, Li AV, Ockenhouse CF, Yadava A, Irvine DJ. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc Natl Acad Sci U S A 2012; 109 (04) 1080-1085
  • 98 Lu S. Heterologous prime-boost vaccination. Curr Opin Immunol 2009; 21 (03) 346-351
  • 99 Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release 2016; 240: 135-141
  • 100 Wong KK, Li WA, Mooney DJ, Dranoff G. Advances in therapeutic cancer vaccines. Adv Immunol 2016; 130: 191-249
  • 101 Tumeh PC, Harview CL, Yearley JH. , et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515 (7528): 568-571
  • 102 Banchereau J, Palucka K. Immunotherapy: cancer vaccines on the move. Nat Rev Clin Oncol 2018; 15 (01) 9-10
  • 103 Xia AL, Xu Y, Lu XJ. Cancer immunotherapy: challenges and clinical applications. J Med Genet 2019; 56 (01) 1-3
  • 104 Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci U S A 2014; 111 (34) 12288-12293
  • 105 Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015; 348 (6230): 56-61
  • 106 Skyler JS. Diabetes mellitus: pathogenesis and treatment strategies. J Med Chem 2004; 47 (17) 4113-4117
  • 107 Chen H, Zhu H, Zheng J. , et al. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J Control Release 2009; 139 (01) 63-72
  • 108 Wu Y, Gao Y, Qin G. , et al. Sustained release of insulin through skin by intradermal microdelivery system. Biomed Microdevices 2010; 12 (04) 665-671
  • 109 Lee IC, Lin WM, Shu JC, Tsai SW, Chen CH, Tsai MT. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J Biomed Mater Res A 2017; 105 (01) 84-93
  • 110 Weinger K, Jacobson AM, Draelos MT, Finkelstein DM, Simonson DC. Blood glucose estimation and symptoms during hyperglycemia and hypoglycemia in patients with insulin-dependent diabetes mellitus. Am J Med 1995; 98 (01) 22-31
  • 111 Dagogo-Jack SE, Craft S, Cryer PE. Hypoglycemia-associated autonomic failure in insulin-dependent diabetes mellitus. Recent antecedent hypoglycemia reduces autonomic responses to, symptoms of, and defense against subsequent hypoglycemia. J Clin Invest 1993; 91 (03) 819-828
  • 112 Wilinska ME, Budiman ES, Taub MB. , et al. Overnight closed-loop insulin delivery with model predictive control: assessment of hypoglycemia and hyperglycemia risk using simulation studies. J Diabetes Sci Technol 2009; 3 (05) 1109-1120
  • 113 Seong KY, Seo MS, Hwang DY. , et al. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin. J Control Release 2017; 265: 48-56
  • 114 Pettis RJ, Harvey AJ. Microneedle delivery: clinical studies and emerging medical applications. Ther Deliv 2012; 3 (03) 357-371
  • 115 Bhatnagar S, Dave K, Venuganti VVK. Microneedles in the clinic. J Control Release 2017; 260: 164-182
  • 116 Norman JJ, Brown MR, Raviele NA, Prausnitz MR, Felner EI. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr Diabetes 2013; 14 (06) 459-465
  • 117 Marshall S, Sahm LJ, Moore AC. Microneedle technology for immunisation: perception, acceptability and suitability for paediatric use. Vaccine 2016; 34 (06) 723-734
  • 118 Nguyen TT, Park JH. Human studies with microneedles for evaluation of their efficacy and safety. Expert Opin Drug Deliv 2018; 15 (03) 235-245
  • 119 Kochba E, Levin Y, Raz I, Cahn A. Improved insulin pharmacokinetics using a novel microneedle device for intradermal delivery in patients with type 2 diabetes. Diabetes Technol Ther 2016; 18 (09) 525-531
  • 120 Gupta J, Felner EI, Prausnitz MR. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther 2009; 11 (06) 329-337
  • 121 Hirobe S, Azukizawa H, Matsuo K. , et al. Development and clinical study of a self-dissolving microneedle patch for transcutaneous immunization device. Pharm Res 2013; 30 (10) 2664-2674
  • 122 Hirobe S, Azukizawa H, Hanafusa T. , et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 2015; 57: 50-58