Journal of Pediatric Neurology 2021; 19(01): 062-064
DOI: 10.1055/s-0040-1701191
Rapid Communication

Management of Spasticity in Cerebral Palsy: An Electroencephalogram-Oriented Novel Approach

Harinder Jaseja
1   Vellore EEG Center, Gwalior, Madhya Pradesh, India
› Author Affiliations

Abstract

Cerebral palsy (CP) is commonly associated with spasticity though the exact pathophysiology is still unknown. Management of spasticity is an important aspect of care because it can adversely affect quality of life. Patients with CP also commonly exhibit interictal epileptiform discharges (IEDs) on their electroencephalograms (EEGs) even without clinical epilepsy. This brief article studies the relationship between spasticity and IEDs. Based on the intrinsic relationship between the two and available pathophysiological evidence of spasticity, the author suggests a mandatory EEG in all patients with CP and spasticity and consideration for initiation of IEDs when detected.



Publication History

Received: 10 November 2019

Accepted: 10 December 2019

Article published online:
28 January 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bax M, Goldstein M, Rosenbaum P. et al; Executive Committee for the Definition of Cerebral Palsy. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol 2005; 47 (08) 571-576
  • 2 McIntyre S, Morgan C, Walker K, Novak I. Cerebral palsy--don't delay. Dev Disabil Res Rev 2011; 17 (02) 114-129
  • 3 Arneson CL, Durkin MS, Benedict RE. et al. Prevalence of cerebral palsy: autism and developmental disabilities monitoring network, three sites, United States, 2004. Disabil Health J 2009; 2 (01) 45-48
  • 4 Paneth N, Hong T, Korzeniewski S. The descriptive epidemiology of cerebral palsy. Clin Perinatol 2006; 33 (02) 251-267
  • 5 Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol 2002; 44 (09) 633-640
  • 6 Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics 2002; 110 (06) 1220-1225
  • 7 Brown P. Pathophysiology of spasticity. J Neurol Neurosurg Psychiatry 1994; 57 (07) 773-777
  • 8 Travis AM. Neurological deficiencies following supplementary motor area lesions in Macaca mulatta . Brain 1955; 78 (02) 174-198
  • 9 Fulton JF, Kennard MA. A study of flaccid and spastic paralyses produced by lesions of the cerebral cortex in primates. Res Publ Assoc Res Nerv Ment Dis 1934; 13: 158-210
  • 10 Woolsey CN. Discussion on experimental hypertonia in the monkey: interruption of pyramidal or pyramidal-extra pyramidal cortical projections. Trans Am Neurol Assoc 1971; 96: 164-166
  • 11 Goldberger ME. The extrapyramidal systems of the spinal cord. II. Results of combined pyramidal and extrapyramidal lesions in the macaque. J Comp Neurol 1969; 135 (01) 1-26
  • 12 Gilman S, Marco LA, Ebel HC. Effects of medullary pyramidotomy in the monkey. II. Abnormalities of spindle afferent responses. Brain 1971; 94 (03) 515-530
  • 13 Novak I, Hines M, Goldsmith S, Barclay R. Clinical prognostic messages from a systematic review on cerebral palsy. Pediatrics 2012; 130 (05) e1285-e1312
  • 14 Christensen D, Van Naarden Braun K, Doernberg NS. et al. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning - Autism and Developmental Disabilities Monitoring Network, USA, 2008. Dev Med Child Neurol 2014; 56 (01) 59-65
  • 15 Sheila J. Wallace. Dev Med Child Neurol 2001; 43: 713-717
  • 16 Aarts JH, Binnie CD, Smit AM, Wilkins AJ. Selective cognitive impairment during focal and generalized epileptiform EEG activity. Brain 1984; 107 (Pt 1): 293-308
  • 17 Croona C, Kihlgren M, Lundberg S, Eeg-Olofsson O, Eeg-Olofsson KE. Neuropsychological findings in children with benign childhood epilepsy with centrotemporal spikes. Dev Med Child Neurol 1999; 41 (12) 813-818
  • 18 Deonna T, Zesiger P, Davidoff V, Maeder M, Mayor C, Roulet E. Benign partial epilepsy of childhood: a longitudinal neuropsychological and EEG study of cognitive function. Dev Med Child Neurol 2000; 42 (09) 595-603
  • 19 Mantovani JF. Autistic regression and Landau-Kleffner syndrome: progress or confusion?. Dev Med Child Neurol 2000; 42 (05) 349-353
  • 20 Maquet P, Hirsch E, Metz-Lutz MN. et al. Regional cerebral glucose metabolism in children with deterioration of one or more cognitive functions and continuous spike-and-wave discharges during sleep. Brain 1995; 118 (Pt 6): 1497-1520
  • 21 Elewa MK, Mostafa MA. The subclinical epileptiform discharges among nonepileptic cerebral palsy patients. Egypt J Neurol Psychiat Neurosurg 2016; 53: 268-273
  • 22 Li SY, Qian XG, Zhao YL, Fu WJ, Tan XR, Liu ZH. Risk factors for interictal epileptiform discharges on electroencephalogram in children with spastic hemiplegic cerebral palsy [article in Chinese]. Zhongguo Dang Dai Er Ke Za Zhi 2015; 17 (12) 1338-1341
  • 23 Bhimani R, Anderson L. Clinical understanding of spasticity: implications for practice. Rehabil Res Pract 2014; 2014: 279175
  • 24 Shamsoddini A, Amirsalari S, Hollisaz MT, Rahimnia A, Khatibi-Aghda A. Management of spasticity in children with cerebral palsy. Iran J Pediatr 2014; 24 (04) 345-351
  • 25 Rajak BL, Gupta M, Bhatia D, Mukherjee A. Increasing number of therapy sessions of repetitive transcranial magnetic stimulation improves motor development by reducing muscle spasticity in cerebral palsy children. Ann Indian Acad Neurol 2019; 22 (03) 302-307
  • 26 Valero-Cabré A, Pascual-Leone A. Impact of TMS on the primary motor cortex and associated spinal systems. IEEE Eng Med Biol Mag 2005; 24 (01) 29-35
  • 27 Ferrarelli F, Haraldsson HM, Barnhart TE. et al. A [17F]-fluoromethane PET/TMS study of effective connectivity. Brain Res Bull 2004; 64 (02) 103-113
  • 28 Valle AC, Dionisio K, Pitskel NB. et al. Low and high frequency repetitive transcranial magnetic stimulation for the treatment of spasticity. Dev Med Child Neurol 2007; 49 (07) 534-538
  • 29 Gilbert DL. Low and high-frequency repetitive transcranial magnetic stimulation for the treatment of spasticity. Dev Med Child Neurol 2007; 49 (07) 486
  • 30 Jaseja H. Treatment of interictal epileptiform discharges in cerebral palsy patients without clinical epilepsy: hope for a better outcome in prognosis. Clin Neurol Neurosurg 2007; 109 (03) 221-224
  • 31 Jaseja H. Cerebral palsy: interictal epileptiform discharges and cognitive impairment. Clin Neurol Neurosurg 2007; 109 (07) 549-552
  • 32 Jaseja H. Evidence in support of treating interictal epileptiform discharges in cerebral palsy patients without clinical epilepsy for an improved prognostic outcome and quality of life. Clin Neurol Neurosurg 2009; 111 (04) 396-397
  • 33 Jaseja H, Jaseja B, Badaya S, Tonpay P. Treatment of interictal epileptiform discharges (IEDs) in patients with cerebral palsy for an improved prognostic outcome and quality of life: emerging evidence. Epilepsy Behav 2012; 25 (03) 473
  • 34 Plioplys AV. Autism: electroencephalogram abnormalities and clinical improvement with valproic acid. Arch PediatrAdolesc Med 1994; 148 (02) 220-222
  • 35 Pressler RM, Robinson RO, Wilson GA, Binnie CD. Treatment of interictal epileptiform discharges can improve behavior in children with behavioral problems and epilepsy. J Pediatr 2005; 146 (01) 112-117
  • 36 García-Peñas JJ. Interictal epileptiform discharges and cognitive impairment in children [article in Spanish]. Rev Neurol 2011; 52 (Suppl. 01) S43-S52
  • 37 Gordon K, Bawden H, Camfield P, Mann S, Orlik P. Valproic acid treatment of learning disorder and severely epileptiform EEG without clinical seizures. J Child Neurol 1996; 11 (01) 41-43
  • 38 Bax M, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy: the european cerebral palsy study. JAMA 2006; 296 (13) 1602-1608