CC BY-NC-ND 4.0 · Organic Materials 2020; 02(01): 020-025
DOI: 10.1055/s-0039-3402512
Short Review
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

Organic Molecules of Intrinsic Microporosity

a   EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
› Institutsangaben
Funding Information The EPSRC, United Kingdom, is acknowledged for funding (EP/G065144 and EP/H024034).
Weitere Informationen

Publikationsverlauf

Received: 08. Oktober 2019

Accepted after revision: 20. November 2019

Publikationsdatum:
23. Januar 2020 (online)


Abstract

Organic molecules of intrinsic microporosity (OMIMs) are rigid molecules with an awkward shape that are designed to pack space inefficiently in the solid state maximizing free volume and thereby generating apparent microporosity as determined by gas adsorption. In this perspective article, the origin of the OMIM concept is explained and the progress in its realization both by synthesis and packing simulation is reviewed.

 
  • References

  • 1 Slater AG, Cooper AI. Science 2015; 348: aaa8075
  • 2 Kitagawa S, Kitaura R, Noro S. Angew. Chem. Int. Ed. 2004; 43: 2334
  • 3 Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. Science 2013; 341: 974
    • 4a Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Science 2005; 310: 1166
    • 4b Feng X, Ding X, Jiang D. Chem. Soc. Rev. 2012; 41: 6010
  • 5 Lin R-B, He Y, Li P, Wang H, Zhou W, Chen B. Chem. Soc. Rev. 2019; 48: 1362
    • 7a Tozawa T, Jones JTA, Swamy SI, Jiang S, Adams DJ, Shakespeare S, Clowes R, Bradshaw D, Hasell T, Chong SY, Tang C, Thompson S, Parker J, Trewin A, Bacsa J, Slawin AMZ, Steiner A, Cooper AI. Nat. Mater. 2009; 8: 973
    • 7b Mastalerz M, Schneider MW, Oppel IM, Presly O. Angew. Chem. Int. Ed. 2011; 50: 1046
    • 7c Schneider MW, Hauswald HJS, Stoll R, Mastalerz M. Chem. Commun. 2012; 48: 9861
    • 7d Schneider MW, Oppel IM, Ott H, Lechner LG, Hauswald HJS, Stoll R, Mastalerz M. Chem. Eur. J. 2012; 18: 836
    • 7e Zhang G, Mastalerz M. Chem. Soc. Rev. 2014; 43: 1934
    • 7f Zhang G, Presly O, White F, Oppel IM, Mastalerz M. Angew. Chem. Int. Ed. 2014; 53: 1516
    • 7g Hasell T, Cooper AI. Nat. Rev. Mater. 2016; 1: 16053
    • 7h Mastalerz M. Acc. Chem. Res. 2018; 51: 2411
    • 9a Sozzani P, Bracco S, Comotti A, Ferretti L, Simonutti R. Angew. Chem. Int. Ed. 2005; 44: 1816
    • 9b Msayib KJ, Book D, Budd PM, Chaukura N, Harris KDM, Helliwell M, Tedds S, Walton A, Warren JE, Xu MC, McKeown NB. Angew. Chem. Int. Ed. 2009; 48: 3273
    • 9c Bezzu CG, Helliwell M, Warren JE, Allan DR, McKeown NB. Science 2010; 327: 1627
    • 9d Tian J, Thallapally PK, McGrail BP. CrystEngComm 2012; 14: 1909
  • 10 Tsyurupa MP, Davankov VA. React. Funct. Polym. 2006; 66: 768
    • 11a Ghanem BS, Hashem M, Harris KDM, Msayib KJ, Xu MC, Budd PM, Chaukura N, Book D, Tedds S, Walton A, McKeown NB. Macromolecules 2010; 43: 5287
    • 11b McKeown NB, Hanif S, Msayib K, Tattershall CE, Budd PM. Chem. Commun. 2002; 2782
    • 11c McKeown NB, Makhseed S, Budd PM. Chem. Commun. 2002; 2780
  • 12 Ben T, Ren H, Ma SQ, Cao DP, Lan JH, Jing XF, Wang WC, Xu J, Deng F, Simmons JM, Qiu SL, Zhu GS. Angew. Chem. Int. Ed. 2009; 48: 9457
    • 13a Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE. Chem. Commun. 2004; 230
    • 13b Budd PM, McKeown NB, Fritsch D. Macromol. Symp. 2006; 245: 403
    • 13c McKeown NB, Budd PM. Macromolecules 2010; 43: 5163
  • 14 Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen JC, Bernardo P, Bazzarelli F, McKeown NB. Science 2013; 339: 303
  • 15 Torquato S, Stillinger FH. Rev. Mod. Phys. 2010; 82: 2633
  • 16 Jiao Y, Stillinger FH, Torquato S. Phys. Rev. Lett. 2008; 100: 245504
  • 17 Jiao Y, Stillinger FH, Torquato S. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 2009; 79: 041309
  • 18 Jones JTA, Hasell T, Wu X, Bacsa J, Jelfs KE, Schmidtmann M, Chong SY, Adams DJ, Trewin A, Schiffman F, Cora F, Slater B, Steiner A, Day GM, Cooper AI. Nature 2011; 474: 367
    • 19a Bojdys MJ, Briggs ME, Jones JTA, Adams DJ, Chong SY, Schmidtmann M, Cooper AI. J. Am. Chem. Soc. 2011; 133: 16566
    • 19b Jiang S, Jones JTA, Hasell T, Blythe CE, Adams DJ, Trewin A, Cooper AI. Nat. Commun. 2011; 2: 207
    • 20a Jiang S, Jelfs KE, Holden D, Hasell T, Chong SY, Haranczyk M, Trewin A, Cooper AI. J. Am. Chem. Soc. 2013; 135: 17818
    • 20b Evans JD, Huang DM, Hill MR, Sumby CJ, Sholl DS, Thornton AW, Doonan CJ. J. Phys. Chem. C 2015; 119: 7746
    • 23a Chong JH, Ardakani SJ, Smith KJ, MacLachlan MJ. Chem. Eur. J. 2009; 15: 11824
    • 23b Crane AK, MacLachlan MJ. Eur. J. Inorg. Chem. 2012; 17
  • 24 Chong JH, MacLachlan MJ. J. Org. Chem. 2007; 72: 8683
    • 25a Mastalerz M, Oppel IM. Eur. J. Org. Chem. 2011; 5971
    • 25b Reinhard D, Zhang WS, Rominger F, Curticean R, Wacker I, Schroder RR, Mastalerz M. Chem. Eur. J. 2018; 24: 11433
  • 28 Abbott LJ, McDermott AG, Del Regno A, Taylor RGD, Bezzu CG, Msayib KJ, McKeown NB, Siperstein FR, Runt J, Colina CM. J. Phys. Chem. B 2013; 117: 355
  • 29 Taylor RGD, Carta M, Bezzu CG, Walker J, Msayib KJ, Kariuki BM, McKeown NB. Org. Lett. 2014; 16: 1848
    • 30a Kupgan G, Abbott LJ, Hart KE, Colina CM. Chem. Rev. 2018; 118: 5488
    • 30b Hart KE, Springmeier JM, McKeown NB, Colina CM. Phys. Chem. Chem. Phys. 2013; 15: 20161
  • 31 Abbott LJ, McKeown NB, Colina CM. J. Mater. Chem. A 2013; 1: 11950
  • 32 Taylor RGD, Bezzu CG, Carta M, Msayib KJ, Walker J, Short R, Kariuki BM, McKeown NB. Chem. Eur. J. 2016; 22: 2466
    • 33a Kohl B, Rominger F, Mastalerz M. Org. Lett. 2014; 16: 704
    • 33b Kohl B, Rominger F, Mastalerz M. Chem. Eur. J. 2015; 21: 17308
    • 34a Mughal EU, Eberhard J, Kuck D. Chem. Eur. J. 2013; 19: 16029
    • 34b Zhu PC, Liu Y, Peng LH, Zhang C. Tetrahedron Lett. 2014; 55: 521
    • 34c Reinhard D, Rominger F, Mastalerz M. J. Org. Chem. 2015; 80: 9342
    • 34d Lucchesini F, Grasse M, Neumann B, Stammler HG, Tellenbroker J, Kuck D. Eur. J. Org. Chem. 2016; 2828
    • 34e Hu Y, Wang D, Baumgarten M, Schollmeyer D, Müllen K, Narita A. Chem. Commun. 2018; 54: 13575
  • 35 Weidman JR, Guo RL. Ind. Eng. Chem. Res. 2017; 56: 4220
    • 36a Pyka I, Lubczyk D, Saiju MDS, Salbeck J, Waldvogel SR. ChemPlusChem 2017; 82: 1116
    • 36b Pyka I, Nikl J, Schollmeyer D, Waldvogel SR. Eur. J. Org. Chem. 2017; 3501
    • 36c Prantl E, Kohl B, Ryvlin D, Biegger P, Wadepohl H, Rominger F, Bunz UHF, Mastalerz M, Waldvogel SR. ChemPlusChem 2019; 84: 1239