Semin Thromb Hemost 2020; 46(02): 116-124
DOI: 10.1055/s-0039-3402428
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Central Role of Fibrinolytic Response in Trauma-Induced Coagulopathy: A Hematologist's Perspective

Hau C. Kwaan
1   Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
› Author Affiliations
Further Information

Publication History

Publication Date:
26 December 2019 (online)

Abstract

Severe trauma is the leading cause of death globally. Though improved resuscitation, particularly early initiation, has reduced the 24-hour mortality rate, the overall morbidity and 30-day mortality remain high mostly due to massive hemorrhage and head injury in the early stages and sepsis and multiorgan failure later on. With recent clinical trials of antifibrinolytic treatment with tranexamic acid, and with the observations that fibrinolytic activity varies widely among the injured patients, the role of the fibrinolytic system in trauma has become a major focus of investigations in trauma-induced coagulopathy. Most of the body's response to trauma involves the endothelium, tissue factor release, and platelet activation. In addition, there are inflammatory and immune responses. All these events directly or indirectly affect the fibrinolytic system. A full understanding of these mechanisms has translational implications on the management of these patients. In this article, the multifaceted responses of fibrinolysis following injury are reviewed.

 
  • References

  • 1 Kyu HH, Pinho C, Wagner JA. , et al; Global Burden of Disease Pediatrics Collaboration. Global and national burden of diseases and injuries among children and adolescents between 1990 and 2013: findings from the Global Burden of Disease 2013 Study. JAMA Pediatr 2016; 170 (03) 267-287
  • 2 Mokdad AH, Forouzanfar MH, Daoud F. , et al. Global burden of diseases, injuries, and risk factors for young people's health during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2016; 387 (10036): 2383-2401
  • 3 Norton R, Kobusingye O. Injuries. N Engl J Med 2013; 368 (18) 1723-1730
  • 4 Rhee P, Joseph B, Pandit V. , et al. Increasing trauma deaths in the United States. Ann Surg 2014; 260 (01) 13-21
  • 5 Callcut RA, Wakam G, Conroy AS. , et al. Discovering the truth about life after discharge: long-term trauma-related mortality. J Trauma Acute Care Surg 2016; 80 (02) 210-217
  • 6 Mengoli C, Franchini M, Marano G. , et al. The use of fibrinogen concentrate for the management of trauma-related bleeding: a systematic review and meta-analysis. Blood Transfus 2017; 15 (04) 318-324
  • 7 Holcomb JB, Tilley BC, Baraniuk S. , et al; PROPPR Study Group. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA 2015; 313 (05) 471-482
  • 8 Morgagni J. The Seats and Causes of Diseases Investigated by Anatomy. London: : Printed for A. Millar; and T. Cadell, his successor; 1769
  • 9 Hunter J. A Treatise on the Blood, Inflammation, and Gun-Shot Wounds: J. London: : Richardson for G. Nicol; 1794
  • 10 Biggs R, MacFarlane RG. Human Blood Coagulation and Its Disorders. London: Blackwell Scientific; 1953
  • 11 Innes D, Sevitt S. Coagulation and fibrinolysis in injured patients. J Clin Pathol 1964; 17: 1-13
  • 12 Moore HB, Moore EE, Gonzalez E. , et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg 2014; 77 (06) 811-817 , discussion 817
  • 13 Kwaan HC, McFadzean AJ. On plasma fibrinolytic activity induced by ischaemia. Clin Sci 1956; 15 (02) 245-257
  • 14 Kwaan HC, Lo R, McFadzean AJ. The production of plasma fibrinolytic activity in vivo by serotonin (5-hydroxytryptamine) creatinine sulphate. Clin Sci 1957; 16 (02) 255-259
  • 15 Kwaan HC, Lo R, McFadzean JS. On the lysis of thrombi experimentally produced within veins. Br J Haematol 1958; 4 (01) 51-62
  • 16 Kwaan HC, Lo R, McFadzean AJ. On the production of plasma fibrinolytic activity within veins. Clin Sci 1957; 16 (02) 241-253
  • 17 O'Rourke J, Jiang X, Hao Z, Cone RE, Hand AR. Distribution of sympathetic tissue plasminogen activator (tPA) to a distant microvasculature. J Neurosci Res 2005; 79 (06) 727-733
  • 18 Hao Z, Jiang X, Sharafeih R. , et al. Stimulated release of tissue plasminogen activator from artery wall sympathetic nerves: implications for stress-associated wall damage. Stress 2005; 8 (02) 141-149
  • 19 Evans JA, van Wessem KJ, McDougall D, Lee KA, Lyons T, Balogh ZJ. Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg 2010; 34 (01) 158-163
  • 20 Bardes JM, Inaba K, Schellenberg M. , et al. The contemporary timing of trauma deaths. J Trauma Acute Care Surg 2018; 84 (06) 893-899
  • 21 Demetriades D, Murray J, Charalambides K. , et al. Trauma fatalities: time and location of hospital deaths. J Am Coll Surg 2004; 198 (01) 20-26
  • 22 Gruen RL, Brohi K, Schreiber M. , et al. Haemorrhage control in severely injured patients. Lancet 2012; 380 (9847): 1099-1108
  • 23 Wafaisade A, Lefering R, Bouillon B. , et al; Trauma Registry of the German Society for Trauma Surgery. Epidemiology and risk factors of sepsis after multiple trauma: an analysis of 29,829 patients from the Trauma Registry of the German Society for Trauma Surgery. Crit Care Med 2011; 39 (04) 621-628
  • 24 Moore HB, Moore EE, Liras IN. , et al. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg 2016; 222 (04) 347-355
  • 25 Roullet S, Weinmann L, Labrouche S. , et al. Fibrinolysis in trauma patients: wide variability demonstrated by the Lysis Timer. Scand J Clin Lab Invest 2019; 79 (1-2): 136-142
  • 26 Gall LS, Brohi K, Davenport RA. Diagnosis and treatment of hyperfibrinolysis in trauma (a European perspective). Semin Thromb Hemost 2017; 43 (02) 224-234
  • 27 Kutcher ME, Cripps MW, McCreery RC. , et al. Criteria for empiric treatment of hyperfibrinolysis after trauma. J Trauma Acute Care Surg 2012; 73 (01) 87-93
  • 28 Shakur H, Roberts I, Bautista R. , et al; CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376 (9734): 23-32
  • 29 Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) study. Arch Surg 2012; 147 (02) 113-119
  • 30 Morrison JJ, Ross JD, Dubose JJ, Jansen JO, Midwinter MJ, Rasmussen TE. Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury: findings from the MATTERs II study. JAMA Surg 2013; 148 (03) 218-225
  • 31 Valle EJ, Allen CJ, Van Haren RM. , et al. Do all trauma patients benefit from tranexamic acid?. J Trauma Acute Care Surg 2014; 76 (06) 1373-1378
  • 32 Harvin JA, Peirce CA, Mims MM. , et al. The impact of tranexamic acid on mortality in injured patients with hyperfibrinolysis. J Trauma Acute Care Surg 2015; 78 (05) 905-909 , discussion 909–911
  • 33 Moore HB, Moore EE, Huebner BR. , et al. Tranexamic acid is associated with increased mortality in patients with physiological fibrinolysis. J Surg Res 2017; 220: 438-443
  • 34 Kwaan HC. The biologic role of components of the plasminogen-plasmin system. Prog Cardiovasc Dis 1992; 34 (05) 309-316
  • 35 Urano T, Castellino FJ, Suzuki Y. Regulation of plasminogen activation on cell surfaces and fibrin. J Thromb Haemost 2018
  • 36 Aird WC, Kwaan HC. Under-recognized significance of endothelial heterogeneity: hemostasis, thrombosis, and beyond. Semin Thromb Hemost 2010; 36 (03) 225-226
  • 37 Declerck PJ, Gils A. Three decades of research on plasminogen activator inhibitor-1: a multifaceted serpin. Semin Thromb Hemost 2013; 39 (04) 356-364
  • 38 Davenport RA, Guerreiro M, Frith D. , et al. Activated protein C drives the hyperfibrinolysis of acute traumatic coagulopathy. Anesthesiology 2017; 126 (01) 115-127
  • 39 Gando S, Mayumi T, Ukai T. Activated protein C plays no major roles in the inhibition of coagulation or increased fibrinolysis in acute coagulopathy of trauma-shock: a systematic review. Thromb J 2018; 16: 13
  • 40 Chapman MP, Moore EE, Moore HB. , et al. Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg 2016; 80 (01) 16-23 , discussion 23–25
  • 41 Longstaff C. Measuring fibrinolysis: from research to routine diagnostic assays. J Thromb Haemost 2018; 16 (04) 652-662
  • 42 Declerck PJ, Moreau H, Jespersen J, Gram J, Kluft C. Multicenter evaluation of commercially available methods for the immunological determination of plasminogen activator inhibitor-1 (PAI-1). Thromb Haemost 1993; 70 (05) 858-863
  • 43 Moore HB, Moore EE, Chapman MP. , et al. Does tranexamic acid improve clot strength in severely injured patients who have elevated fibrin degradation products and low fibrinolytic activity, measured by thrombelastography?. J Am Coll Surg 2019; 229 (01) 92-101
  • 44 Siefert SA, Chabasse C, Mukhopadhyay S. , et al. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice. J Thromb Haemost 2014; 12 (10) 1706-1716
  • 45 Gardiner EE, Medcalf RL. Is plasminogen activator inhibitor type 2 really a plasminogen activator inhibitor after all?. J Thromb Haemost 2014; 12 (10) 1703-1705
  • 46 Podor TJ, Peterson CB, Lawrence DA. , et al. Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin. J Biol Chem 2000; 275 (26) 19788-19794
  • 47 Podor TJ, Shaughnessy SG, Blackburn MN, Peterson CB. New insights into the size and stoichiometry of the plasminogen activator inhibitor type-1.vitronectin complex. J Biol Chem 2000; 275 (33) 25402-25410
  • 48 Ma J, Li H, You C, Liu Y, Ma L, Huang S. Blood coagulation factor XIII-A subunit Val34Leu polymorphisms and intracerebral hemorrhage risk: a meta-analysis of case-control studies. Br J Neurosurg 2015; 29 (05) 672-677
  • 49 Kiesselbach TH, Wagner RH. Fibrin-stabilizing factor: a thrombin-labile platelet protein. Am J Physiol 1966; 211 (06) 1472-1476
  • 50 Katona E E, Ajzner E, Tóth K, Kárpáti L, Muszbek L. Enzyme-linked immunosorbent assay for the determination of blood coagulation factor XIII A-subunit in plasma and in cell lysates. J Immunol Methods 2001; 258 (1-2): 127-135
  • 51 Duckert F. The fibrin stabilizing factor, factor XIII. Blut 1973; 26 (03) 177-179
  • 52 James HL, Ganguly P, Jackson CW. Characterization and origin of fibrinogen in blood platelets. A review with recent data. Thromb Haemost 1977; 38 (04) 939-954
  • 53 Nachman RL. Immunologic studies of platelet protein. Blood 1965; 25: 703-711
  • 54 Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA. Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost 2007; 5 (09) 1945-1955
  • 55 Booth NA, Simpson AJ, Croll A, Bennett B, MacGregor IR. Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br J Haematol 1988; 70 (03) 327-333
  • 56 Brogren H, Karlsson L, Andersson M, Wang L, Erlinge D, Jern S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 2004; 104 (13) 3943-3948
  • 57 Plow EF, Collen D. The presence and release of alpha 2-antiplasmin from human platelets. Blood 1981; 58 (06) 1069-1074
  • 58 Mosnier LO, Buijtenhuijs P, Marx PF, Meijers JC, Bouma BN. Identification of thrombin activatable fibrinolysis inhibitor (TAFI) in human platelets. Blood 2003; 101 (12) 4844-4846
  • 59 Schadinger SL, Lin JH, Garand M, Boffa MB. Secretion and antifibrinolytic function of thrombin-activatable fibrinolysis inhibitor from human platelets. J Thromb Haemost 2010; 8 (11) 2523-2529
  • 60 Leung LL, Harpel PC, Nachman RL, Rabellino EM. Histidine-rich glycoprotein is present in human platelets and is released following thrombin stimulation. Blood 1983; 62 (05) 1016-1021
  • 61 Mansilla S, Boulaftali Y, Venisse L. , et al. Macrophages and platelets are the major source of protease nexin-1 in human atherosclerotic plaque. Arterioscler Thromb Vasc Biol 2008; 28 (10) 1844-1850
  • 62 Boulaftali Y, Ho-Tin-Noe B, Pena A. , et al. Platelet protease nexin-1, a serpin that strongly influences fibrinolysis and thrombolysis. Circulation 2011; 123 (12) 1326-1334
  • 63 Kruithof EK, Nicolosa G, Bachmann F. Plasminogen activator inhibitor 1: development of a radioimmunoassay and observations on its plasma concentration during venous occlusion and after platelet aggregation. Blood 1987; 70 (05) 1645-1653
  • 64 Declerck PJ, Alessi MC, Verstreken M, Kruithof EK, Juhan-Vague I, Collen D. Measurement of plasminogen activator inhibitor 1 in biologic fluids with a murine monoclonal antibody-based enzyme-linked immunosorbent assay. Blood 1988; 71 (01) 220-225
  • 65 Park S, Harker LA, Marzec UM, Levin EG. Demonstration of single chain urokinase-type plasminogen activator on human platelet membrane. Blood 1989; 73 (06) 1421-1425
  • 66 Baeten KM, Richard MC, Kanse SM, Mutch NJ, Degen JL, Booth NA. Activation of single-chain urokinase-type plasminogen activator by platelet-associated plasminogen: a mechanism for stimulation of fibrinolysis by platelets. J Thromb Haemost 2010; 8 (06) 1313-1322
  • 67 Vaughan DE, Mendelsohn ME, Declerck PJ, Van Houtte E, Collen D, Loscalzo J. Characterization of the binding of human tissue-type plasminogen activator to platelets. J Biol Chem 1989; 264 (27) 15869-15874
  • 68 Kutcher ME, Redick BJ, McCreery RC. , et al. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg 2012; 73 (01) 13-19
  • 69 Solomon C, Traintinger S, Ziegler B. , et al. Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost 2011; 106 (02) 322-330
  • 70 Wohlauer MV, Moore EE, Thomas S. , et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg 2012; 214 (05) 739-746
  • 71 Davis PK, Musunuru H, Walsh M. , et al. Platelet dysfunction is an early marker for traumatic brain injury-induced coagulopathy. Neurocrit Care 2013; 18 (02) 201-208
  • 72 Moore HB, Moore EE, Chapman MP. , et al. Viscoelastic measurements of platelet function, not fibrinogen function, predicts sensitivity to tissue-type plasminogen activator in trauma patients. J Thromb Haemost 2015; 13 (10) 1878-1887
  • 73 Goodnight SH, Kenoyer G, Rapaport SI, Patch MJ, Lee JA, Kurze T. Defibrination after brain-tissue destruction: a serious complication of head injury. N Engl J Med 1974; 290 (19) 1043-1047
  • 74 Halpern CH, Reilly PM, Turtz AR, Stein SC. Traumatic coagulopathy: the effect of brain injury. J Neurotrauma 2008; 25 (08) 997-1001
  • 75 Maegele M, Schöchl H, Menovsky T. , et al. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management. Lancet Neurol 2017; 16 (08) 630-647
  • 76 Hijazi N, Abu Fanne R, Abramovitch R. , et al. Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood 2015; 125 (16) 2558-2567
  • 77 Fair K, Farrell D, McCully B. , et al. Fibrinolytic Activation in Patients with Progressive Intracranial Hemorrhage after Traumatic Brain Injury. J Neurotrauma 2019 (e-pub ahead of print) Doi: 10.1089/neu.2018.6234
  • 78 Hajjar KA, Jacovina AT, Chacko J. An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem 1994; 269 (33) 21191-21197
  • 79 Hajjar KA, Krishnan S. Annexin II: a mediator of the plasmin/plasminogen activator system. Trends Cardiovasc Med 1999; 9 (05) 128-138
  • 80 Hajjar KA, Mauri L, Jacovina AT. , et al. Tissue plasminogen activator binding to the annexin II tail domain. Direct modulation by homocysteine. J Biol Chem 1998; 273 (16) 9987-9993
  • 81 Hajjar KA, Menell JS. Annexin II: a novel mediator of cell surface plasmin generation. Ann N Y Acad Sci 1997; 811: 337-349
  • 82 O'Connell PA, Waisman DM. Regulation of plasmin generation by the annexin A2 heterotetramer: a shift in perspective. Future Oncol 2012; 8 (07) 763-765
  • 83 Madureira PA, O'Connell PA, Surette AP, Miller VA, Waisman DM. The biochemistry and regulation of S100A10: a multifunctional plasminogen receptor involved in oncogenesis. J Biomed Biotechnol 2012; 2012: 353687
  • 84 Miller VA, Madureira PA, Kamaludin AA. , et al. Mechanism of plasmin generation by S100A10. Thromb Haemost 2017; 117 (06) 1058-1071
  • 85 Kwaan HC, Wang J, Weiss I. Expression of receptors for plasminogen activators on endothelial cell surface depends on their origin. J Thromb Haemost 2004; 2 (02) 306-312
  • 86 Kwaan HC, Cull EH. The coagulopathy in acute promyelocytic leukaemia--what have we learned in the past twenty years. Best Pract Res Clin Haematol 2014; 27 (01) 11-18
  • 87 Kwaan HC, Weiss I, Tallman MS. The role of abnormal hemostasis and fibrinolysis in morbidity and mortality of acute promyelocytic leukemia. Semin Thromb Hemost 2019; 45 (06) 612-621
  • 88 Whiteley WN, Emberson J, Lees KR. , et al; Stroke Thrombolysis Trialists' Collaboration. Risk of intracerebral haemorrhage with alteplase after acute ischaemic stroke: a secondary analysis of an individual patient data meta-analysis. Lancet Neurol 2016; 15 (09) 925-933
  • 89 Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 2003; 112 (10) 1533-1540
  • 90 Su EJ, Fredriksson L, Geyer M. , et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 2008; 14 (07) 731-737
  • 91 Medcalf RL. The traumatic side of fibrinolysis. Blood 2015; 125 (16) 2457-2458
  • 92 Medcalf RL. Fibrinolysis: from blood to the brain. J Thromb Haemost 2017; 15 (11) 2089-2098
  • 93 Paterson PY, Gausas J, Koh CS, Kwaan HC. The clotting system: gatekeeper of cerebrovascular permeability and monitor of clinical manifestations of neuroautoimmune disease. Trans Am Clin Climatol Assoc 1986; 97: 149-157
  • 94 Song J, Wu C, Korpos E. , et al. Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration. Cell Rep 2015; 10 (07) 1040-1054
  • 95 Lewandowski SA, Nilsson I, Fredriksson L. , et al. Presymptomatic activation of the PDGF-CC pathway accelerates onset of ALS neurodegeneration. Acta Neuropathol 2016; 131 (03) 453-464
  • 96 Lewandowski SA, Fredriksson L, Lawrence DA, Eriksson U. Pharmacological targeting of the PDGF-CC signaling pathway for blood-brain barrier restoration in neurological disorders. Pharmacol Ther 2016; 167: 108-119
  • 97 Su EJ, Fredriksson L, Kanzawa M. , et al. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury. Front Cell Neurosci 2015; 9: 385
  • 98 Wahlgren N, Thorén M, Höjeberg B. , et al. Randomized assessment of imatinib in patients with acute ischaemic stroke treated with intravenous thrombolysis. J Intern Med 2017; 281 (03) 273-283
  • 99 Prabhakaran P, Ware LB, White KE, Cross MT, Matthay MA, Olman MA. Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2003; 285 (01) L20-L28
  • 100 Fan J, Kapus A, Li YH, Rizoli S, Marshall JC, Rotstein OD. Priming for enhanced alveolar fibrin deposition after hemorrhagic shock: role of tumor necrosis factor. Am J Respir Cell Mol Biol 2000; 22 (04) 412-421
  • 101 Whyte CS, Mitchell JL, Mutch NJ. Platelet-mediated modulation of fibrinolysis. Semin Thromb Hemost 2017; 43 (02) 115-128
  • 102 Lord JM, Midwinter MJ, Chen YF. , et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet 2014; 384 (9952): 1455-1465
  • 103 Li X, Syrovets T, Genze F. , et al. Plasmin triggers chemotaxis of monocyte-derived dendritic cells through an Akt2-dependent pathway and promotes a T-helper type-1 response. Arterioscler Thromb Vasc Biol 2010; 30 (03) 582-590
  • 104 Foley JH, Peterson EA, Lei V, Wan LW, Krisinger MJ, Conway EM. Interplay between fibrinolysis and complement: plasmin cleavage of iC3b modulates immune responses. J Thromb Haemost 2015; 13 (04) 610-618
  • 105 Draxler DF, Yep K, Hanafi G. , et al. Tranexamic acid modulates the immune response and reduces postsurgical infection rates. Blood Adv 2019; 3 (10) 1598-1609
  • 106 GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385 (9963): 117-171