Semin Thromb Hemost 2020; 46(02): 167-175
DOI: 10.1055/s-0039-3402427
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Extracellular Mitochondria in Traumatic Brain Injury Induced Coagulopathy

Zilong Zhao
1   Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
,
Yuan Zhou
1   Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
,
Min Li
2   Institute of Pathology, School of Medical Sciences, Lanzhou University, Lanzhou, China
,
Jianning Zhang
1   Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
,
Jing-Fei Dong
3   BloodWorks Northwest Research Institute, Seattle, Washington
4   Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
30. Dezember 2019 (online)

Abstract

Traumatic brain injury (TBI) induced coagulopathy remains a significant clinical challenge, with unmet needs for standardizing diagnosis and optimizing treatments. TBI-induced coagulopathy is closely associated with poor outcomes in affected patients. Recent studies have demonstrated that TBI induces coagulopathy, which is mechanistically distinct from the deficient and dilutional coagulopathy found in patients with injuries to the body/limbs and hemorrhagic shock. Multiple causal and disseminating factors have been identified to cause TBI-induced coagulopathy. Among these are extracellular mitochondria (exMTs) released from injured cerebral cells, endothelial cells, and platelets. These circulating exMTs not only express potent procoagulant activity but also promote inflammation, and could remain metabolically active to become a major source of oxidative stress. They activate platelets and endothelial cells to propagate TBI-induced coagulopathy and secondary tissue injury after primary traumatic impact. In this review, we discuss recent advances in our understanding of the role of exMTs in the development of TBI-induced coagulopathy.

 
  • References

  • 1 Disease GBD, Injury I, Prevalence C. ; GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388 (10053): 1545-1602
  • 2 Talving P, Benfield R, Hadjizacharia P, Inaba K, Chan LS, Demetriades D. Coagulopathy in severe traumatic brain injury: a prospective study. J Trauma 2009; 66 (01) 55-61 , discussion 61–62
  • 3 Hulka F, Mullins RJ, Frank EH. Blunt brain injury activates the coagulation process. Arch Surg 1996; 131 (09) 923-927 , discussion 927–928
  • 4 Stein SC, Smith DH. Coagulopathy in traumatic brain injury. Neurocrit Care 2004; 1 (04) 479-488
  • 5 Chang R, Cardenas JC, Wade CE, Holcomb JB. Advances in the understanding of trauma-induced coagulopathy. Blood 2016; 128 (08) 1043-1049
  • 6 MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma 2003; 55 (01) 39-44
  • 7 Brohi K, Cohen MJ, Ganter MT. , et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma 2008; 64 (05) 1211-1217 , discussion 1217
  • 8 Chesebro BB, Rahn P, Carles M. , et al. Increase in activated protein C mediates acute traumatic coagulopathy in mice. Shock 2009; 32 (06) 659-665
  • 9 Zhang J, Zhang F, Dong JF. Coagulopathy induced by traumatic brain injury: systemic manifestation of a localized injury. Blood 2018; 131 (18) 2001-2006
  • 10 Hoots WK. Experience with antithrombin concentrates in neurotrauma patients. Semin Thromb Hemost 1997; 23 (Suppl. 01) 3-16
  • 11 Harhangi BS, Kompanje EJ, Leebeek FW, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir (Wien) 2008; 150 (02) 165-175 , discussion 175
  • 12 Tian Y, Salsbery B, Wang M. , et al. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury. Blood 2015; 125 (13) 2151-2159
  • 13 Zhou Y, Cai W, Zhao Z. , et al. Lactadherin promotes microvesicle clearance to prevent coagulopathy and improves survival of severe TBI mice. Blood 2018; 131 (05) 563-572
  • 14 Ko J, Hemphill M, Yang Z. , et al. Multi-dimensional mapping of brain-derived extracellular vesicle microRNA biomarker for traumatic brain injury diagnostics. J Neurotrauma 2019
  • 15 Wada T, Gando S, Maekaw K. , et al. Disseminated intravascular coagulation with increased fibrinolysis during the early phase of isolated traumatic brain injury. Crit Care 2017; 21 (01) 219
  • 16 Samuels JM, Moore EE, Silliman CC. , et al. Severe traumatic brain injury is associated with a unique coagulopathy phenotype. J Trauma Acute Care Surg 2019; 86 (04) 686-693
  • 17 Lentz BR. Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res 2003; 42 (05) 423-438
  • 18 Nesheim ME, Mann KG. The kinetics and cofactor dependence of the two cleavages involved in prothrombin activation. J Biol Chem 1983; 258 (09) 5386-5391
  • 19 Terrisse AD, Puech N, Allart S. , et al. Internalization of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow. J Thromb Haemost 2010; 8 (12) 2810-2819
  • 20 Faille D, El-Assaad F, Mitchell AJ. , et al. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J Cell Mol Med 2012; 16 (08) 1731-1738
  • 21 Sinauridze EI, Kireev DA, Popenko NY. , et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97 (03) 425-434
  • 22 Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature 2002; 417 (6885): 182-187
  • 23 Zhao Z, Wang M, Tian Y. , et al. Cardiolipin-mediated procoagulant activity of mitochondria contributes to traumatic brain injury-associated coagulopathy in mice. Blood 2016; 127 (22) 2763-2772
  • 24 Zhao Z, Zhou Y, Hilton T. , et al. Extracellular mitochondria released from traumatized brains induced platelet procoagulant activity. Haematologica 2019 (e-pub ahead of print) Doi: 10.3324/haematol.2018.214932
  • 25 Puhm F, Afonyushkin T, Resch U. , et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circ Res 2019; 125 (01) 43-52
  • 26 Anthonymuthu TS, Kenny EM, Hier ZE. , et al. Detection of brain specific cardiolipins in plasma after experimental pediatric head injury. Exp Neurol 2019; 316: 63-73
  • 27 Anthonymuthu TS, Kenny EM, Lamade AM. , et al. Lipidomics detection of brain cardiolipins in plasma is associated with outcome after cardiac arrest. Crit Care Med 2019; 47 (04) e292-e300
  • 28 Ji J, Kline AE, Amoscato A. , et al. Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat Neurosci 2012; 15 (10) 1407-1413
  • 29 Bornstein NM, Aronovich B, Korczyn AD, Shavit S, Michaelson DM, Chapman J. Antibodies to brain antigens following stroke. Neurology 2001; 56 (04) 529-530
  • 30 López-Escribano H, Miñambres E, Labrador M, Bartolomé MJ, López-Hoyos M. Induction of cell death by sera from patients with acute brain injury as a mechanism of production of autoantibodies. Arthritis Rheum 2002; 46 (12) 3290-3300
  • 31 Lecocq J, Ballou CE. On the structure of cardiolipin. Biochemistry 1964; 3: 976-980
  • 32 Hovius R, Lambrechts H, Nicolay K, de Kruijff B. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta 1990; 1021 (02) 217-226
  • 33 de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B. Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane?. Biochim Biophys Acta 1997; 1325 (01) 108-116
  • 34 Gomez Jr B, Robinson NC. Phospholipase digestion of bound cardiolipin reversibly inactivates bovine cytochrome bc1. Biochemistry 1999; 38 (28) 9031-9038
  • 35 Eble KS, Coleman WB, Hantgan RR, Cunningham CC. Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 1990; 265 (32) 19434-19440
  • 36 Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 2009; 45 (06) 643-650
  • 37 Hostetler KY, Zenner BD, Morris HP. Phosphatidylserine biosynthesis in mitochondria from the Morris 7777 hepatoma. J Lipid Res 1979; 20 (05) 607-613
  • 38 Vance JE, Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta 2013; 1831 (03) 543-554
  • 39 Achleitner G, Gaigg B, Krasser A. , et al. Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem 1999; 264 (02) 545-553
  • 40 Warren BA, Vales O. The release of vesicles from platelets following adhesion to vessel walls in vitro. Br J Exp Pathol 1972; 53 (02) 206-215
  • 41 Chen H, Xue LX, Guo Y. , et al. The influence of hemocoagulation disorders on the development of posttraumatic cerebral infarction and outcome in patients with moderate or severe head trauma. BioMed Res Int 2013; 2013: 685174
  • 42 Kaufman HH, Hui KS, Mattson JC. , et al. Clinicopathological correlations of disseminated intravascular coagulation in patients with head injury. Neurosurgery 1984; 15 (01) 34-42
  • 43 Stein SC, Graham DI, Chen XH, Smith DH. Association between intravascular microthrombosis and cerebral ischemia in traumatic brain injury. Neurosurgery 2004; 54 (03) 687-691 , discussion 691
  • 44 Lu D, Mahmood A, Goussev A, Qu C, Zhang ZG, Chopp M. Delayed thrombosis after traumatic brain injury in rats. J Neurotrauma 2004; 21 (12) 1756-1766
  • 45 Marcoux G, Duchez AC, Rousseau M. , et al. Microparticle and mitochondrial release during extended storage of different types of platelet concentrates. Platelets 2017; 28 (03) 272-280
  • 46 Marcoux G, Magron A, Sut C. , et al. Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions. Transfusion 2019; 59 (07) 2403-2414
  • 47 Boudreau LH, Duchez AC, Cloutier N. , et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 2014; 124 (14) 2173-2183
  • 48 Chou SH, Lan J, Esposito E. , et al. Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke 2017; 48 (08) 2231-2237
  • 49 Schnüriger B, Inaba K, Abdelsayed GA. , et al. The impact of platelets on the progression of traumatic intracranial hemorrhage. J Trauma 2010; 68 (04) 881-885
  • 50 Nekludov M, Bellander BM, Blombäck M, Wallen HN. Platelet dysfunction in patients with severe traumatic brain injury. J Neurotrauma 2007; 24 (11) 1699-1706
  • 51 Zhang B, Asadi S, Weng Z, Sismanopoulos N, Theoharides TC. Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions. PLoS One 2012; 7 (12) e49767
  • 52 Oka T, Hikoso S, Yamaguchi O. , et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012; 485 (7397): 251-255
  • 53 Andersson SG, Zomorodipour A, Andersson JO. , et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 1998; 396 (6707): 133-140
  • 54 Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol 2001; 2 (06) S1018
  • 55 Meyer A, Laverny G, Bernardi L. , et al. Mitochondria: an organelle of bacterial origin controlling inflammation. Front Immunol 2018; 9: 536
  • 56 Mortensen ES, Fenton KA, Rekvig OP. Lupus nephritis: the central role of nucleosomes revealed. Am J Pathol 2008; 172 (02) 275-283
  • 57 Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 2010; 1805 (01) 53-71
  • 58 Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 2004; 4 (06) 469-478
  • 59 Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 2007; 28 (10) 429-436
  • 60 Zhang Q, Raoof M, Chen Y. , et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464 (7285): 104-107
  • 61 Alberio L, Safa O, Clemetson KJ, Esmon CT, Dale GL. Surface expression and functional characterization of alpha-granule factor V in human platelets: effects of ionophore A23187, thrombin, collagen, and convulxin. Blood 2000; 95 (05) 1694-1702
  • 62 Goyal K, Hazarika A, Khandelwal A. , et al. Non- neurological complications after traumatic brain injury: a prospective observational study. Indian J Crit Care Med 2018; 22 (09) 632-638
  • 63 Lee K, Rincon F. Pulmonary complications in patients with severe brain injury. Crit Care Res Pract 2012; 2012: 207247
  • 64 Galvagno Jr SM, Fox EE, Appana SN. , et al; PROPPR Study Group. Outcomes after concomitant traumatic brain injury and hemorrhagic shock: a secondary analysis from the Pragmatic, Randomized Optimal Platelets and Plasma Ratios trial. J Trauma Acute Care Surg 2017; 83 (04) 668-674
  • 65 Kilbaugh TJ, Lvova M, Karlsson M. , et al. Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. PLoS One 2015; 10 (06) e0130927
  • 66 Becker Y, Marcoux G, Allaeys I. , et al. Autoantibodies in systemic lupus erythematosus target mitochondrial RNA. Front Immunol 2019; 10: 1026
  • 67 Iyer SS, He Q, Janczy JR. , et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 2013; 39 (02) 311-323
  • 68 Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004; 20 (03) 319-325
  • 69 Kanneganti TD, Ozören N, Body-Malapel M. , et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 2006; 440 (7081): 233-236
  • 70 Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440 (7081): 237-241
  • 71 Sutterwala FS, Ogura Y, Szczepanik M. , et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 2006; 24 (03) 317-327
  • 72 Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469 (7329): 221-225
  • 73 Cassel SL, Eisenbarth SC, Iyer SS. , et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A 2008; 105 (26) 9035-9040
  • 74 Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417 (01) 1-13
  • 75 Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120 (04) 483-495
  • 76 Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82 (01) 47-95
  • 77 Arthur JF, Gardiner EE, Kenny D, Andrews RK, Berndt MC. Platelet receptor redox regulation. Platelets 2008; 19 (01) 1-8
  • 78 Begonja AJ, Gambaryan S, Geiger J. , et al. Platelet NAD(P)H-oxidase-generated ROS production regulates alphaIIbbeta3-integrin activation independent of the NO/cGMP pathway. Blood 2005; 106 (08) 2757-2760
  • 79 Morel N, Morel O, Petit L. , et al. Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury. J Trauma 2008; 64 (03) 698-704
  • 80 Wu Y, Liu W, Zhou Y. , et al. von Willebrand factor enhances microvesicle-induced vascular leakage and coagulopathy in mice with traumatic brain injury. Blood 2018; 132 (10) 1075-1084
  • 81 Podrez EA, Poliakov E, Shen Z. , et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem 2002; 277 (41) 38503-38516
  • 82 Bayir H, Tyurin VA, Tyurina YY. , et al. Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Ann Neurol 2007; 62 (02) 154-169
  • 83 Chao H, Anthonymuthu TS, Kenny EM. , et al. Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury. JCI Insight 2018; 3 (21) 97677
  • 84 Anthonymuthu TS, Kenny EM, Lamade AM, Kagan VE, Bayır H. Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 2018; 124: 493-503
  • 85 Chu CT, Ji J, Dagda RK. , et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 2013; 15 (10) 1197-1205
  • 86 Sakamoto Y, Yano T, Hanada Y. , et al. Vancomycin induces reactive oxygen species-dependent apoptosis via mitochondrial cardiolipin peroxidation in renal tubular epithelial cells. Eur J Pharmacol 2017; 800: 48-56
  • 87 Anderson ME, Meister A. Dynamic state of glutathione in blood plasma. J Biol Chem 1980; 255 (20) 9530-9533
  • 88 Mansoor MA, Svardal AM, Ueland PM. Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem 1992; 200 (02) 218-229
  • 89 Jones DP. Redefining oxidative stress. Antioxid Redox Signal 2006; 8 (9-10): 1865-1879
  • 90 Lash LH, Jones DP. Distribution of oxidized and reduced forms of glutathione and cysteine in rat plasma. Arch Biochem Biophys 1985; 240 (02) 583-592
  • 91 Hiebert JB, Shen Q, Thimmesch AR, Pierce JD. Traumatic brain injury and mitochondrial dysfunction. Am J Med Sci 2015; 350 (02) 132-138
  • 92 Cavallucci V, Bisicchia E, Cencioni MT. , et al. Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons. Cell Death Dis 2014; 5: e1545
  • 93 López JA. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinolysis 1994; 5 (01) 97-119
  • 94 Yokota H, Naoe Y, Nakabayashi M. , et al. Cerebral endothelial injury in severe head injury: the significance of measurements of serum thrombomodulin and the von Willebrand factor. J Neurotrauma 2002; 19 (09) 1007-1015
  • 95 De Oliveira CO, Reimer AG, Da Rocha AB. , et al. Plasma von Willebrand factor levels correlate with clinical outcome of severe traumatic brain injury. J Neurotrauma 2007; 24 (08) 1331-1338
  • 96 Kumar MA, Cao W, Pham HP. , et al. Relative deficiency of plasma A disintegrin and metalloprotease with thrombospondin type 1 repeats 13 activity and elevation of human neutrophil peptides in patients with traumatic brain injury. J Neurotrauma 2019; 36 (02) 222-229
  • 97 Wagner DD, Lawrence SO, Ohlsson-Wilhelm BM, Fay PJ, Marder VJ. Topology and order of formation of interchain disulfide bonds in von Willebrand factor. Blood 1987; 69 (01) 27-32
  • 98 Vischer UM, Wagner DD. von Willebrand factor proteolytic processing and multimerization precede the formation of Weibel-Palade bodies. Blood 1994; 83 (12) 3536-3544
  • 99 Mayadas TN, Wagner DD. In vitro multimerization of von Willebrand factor is triggered by low pH. Importance of the propolypeptide and free sulfhydryls. J Biol Chem 1989; 264 (23) 13497-13503
  • 100 Sporn LA, Marder VJ, Wagner DD. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 1986; 46 (02) 185-190
  • 101 Brouland JP, Egan T, Roussi J. , et al. In vivo regulation of von Willebrand factor synthesis: von Willebrand factor production in endothelial cells after lung transplantation between normal pigs and von Willebrand factor-deficient pigs. Arterioscler Thromb Vasc Biol 1999; 19 (12) 3055-3062
  • 102 Fowler WE, Fretto LJ, Hamilton KK, Erickson HP, McKee PA. Substructure of human von Willebrand factor. J Clin Invest 1985; 76 (04) 1491-1500
  • 103 Moake JL, Chow TW. Increased von Willebrand factor (vWf) binding to platelets associated with impaired vWf breakdown in thrombotic thrombocytopenic purpura. J Clin Apher 1998; 13 (03) 126-132
  • 104 Counts RB, Paskell SL, Elgee SK. Disulfide bonds and the quaternary structure of factor VIII/von Willebrand factor. J Clin Invest 1978; 62 (03) 702-709
  • 105 Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 1998; 67: 395-424
  • 106 Furlan M. Von Willebrand factor: molecular size and functional activity. Ann Hematol 1996; 72 (06) 341-348
  • 107 Sporn LA, Marder VJ, Wagner DD. von Willebrand factor released from Weibel-Palade bodies binds more avidly to extracellular matrix than that secreted constitutively. Blood 1987; 69 (05) 1531-1534
  • 108 Arya M, Anvari B, Romo GM. , et al. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood 2002; 99 (11) 3971-3977
  • 109 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996; 87 (10) 4223-4234
  • 110 Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 1996; 87 (10) 4235-4244
  • 111 Levy GG, Nichols WC, Lian EC. , et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413 (6855): 488-494
  • 112 Siedlecki CA, Lestini BJ, Kottke-Marchant KK, Eppell SJ, Wilson DL, Marchant RE. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 1996; 88 (08) 2939-2950
  • 113 Singh I, Shankaran H, Beauharnois ME, Xiao Z, Alexandridis P, Neelamegham S. Solution structure of human von Willebrand factor studied using small angle neutron scattering. J Biol Chem 2006; 281 (50) 38266-38275
  • 114 Martin C, Morales LD, Cruz MA. Purified A2 domain of von Willebrand factor binds to the active conformation of von Willebrand factor and blocks the interaction with platelet glycoprotein Ibalpha. J Thromb Haemost 2007; 5 (07) 1363-1370
  • 115 Butera D, Passam F, Ju L. , et al. Autoregulation of von Willebrand factor function by a disulfide bond switch. Sci Adv 2018; 4 (02) eaaq1477
  • 116 Fu X, Chen J, Gallagher R, Zheng Y, Chung DW, López JA. Shear stress-induced unfolding of VWF accelerates oxidation of key methionine residues in the A1A2A3 region. Blood 2011; 118 (19) 5283-5291
  • 117 Choi H, Aboulfatova K, Pownall HJ, Cook R, Dong JF. Shear-induced disulfide bond formation regulates adhesion activity of von Willebrand factor. J Biol Chem 2007; 282 (49) 35604-35611
  • 118 Chen J, Fu X, Wang Y. , et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood 2010; 115 (03) 706-712
  • 119 Wang Y, Chen J, Ling M, López JA, Chung DW, Fu X. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation. J Biol Chem 2015; 290 (03) 1422-1431
  • 120 Dong JF, Moake JL, Nolasco L. , et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 2002; 100 (12) 4033-4039
  • 121 Pearlstein DP, Ali MH, Mungai PT, Hynes KL, Gewertz BL, Schumacker PT. Role of mitochondrial oxidant generation in endothelial cell responses to hypoxia. Arterioscler Thromb Vasc Biol 2002; 22 (04) 566-573
  • 122 Li AE, Ito H, Rovira II. , et al. A role for reactive oxygen species in endothelial cell anoikis. Circ Res 1999; 85 (04) 304-310
  • 123 Hough KP, Trevor JL, Strenkowski JG. , et al. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol 2018; 18: 54-64
  • 124 Hayakawa K, Chan SJ, Mandeville ET. , et al. Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 2018; 36 (09) 1404-1410
  • 125 Morrison TJ, Jackson MV, Cunningham EK. , et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med 2017; 196 (10) 1275-1286
  • 126 Phinney DG, Di Giuseppe M, Njah J. , et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 2015; 6: 8472
  • 127 Islam MN, Das SR, Emin MT. , et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 2012; 18 (05) 759-765
  • 128 Hayakawa K, Esposito E, Wang X. , et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 2016; 535 (7613): 551-555
  • 129 Scott SV, Klionsky DJ. Delivery of proteins and organelles to the vacuole from the cytoplasm. Curr Opin Cell Biol 1998; 10 (04) 523-529
  • 130 Garcia-Martinez I, Santoro N, Chen Y. , et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 2016; 126 (03) 859-864