Semin Reprod Med 2019; 37(04): 197-206
DOI: 10.1055/s-0039-3400968
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

KISS1/KISS1R and Breast Cancer: Metastasis Promoter

Stephania Guzman
1   Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
,
Muriel Brackstone
2   Department of Surgery, London Health Sciences Centre, London, Ontario, Canada
,
Frederic Wondisford
1   Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
,
Andy V. Babwah
3   Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
4   Child Health Institute of New Jersey, New Brunswick, New Jersey
,
Moshmi Bhattacharya
1   Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
4   Child Health Institute of New Jersey, New Brunswick, New Jersey
5   Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
› Author Affiliations
Further Information

Publication History

Publication Date:
23 January 2020 (online)

Abstract

Kisspeptins (KPs), peptide products of the kisspeptin-1 (KISS1) gene, are the endogenous ligands for the KISS1 receptor, KISS1R, which is a G protein-coupled receptor. In many human tumors, KISS1 functions as a metastasis-suppressor gene and KISS1/KISS1R signaling has antimetastatic and tumor-suppressor roles. On the contrary, emerging evidence indicates that the KP/KISS1R pathway plays detrimental roles in triple negative breast cancer (TNBC), the most difficult type of breast cancer to treat. TNBC patients initially respond to chemotherapy, but tumors acquire drug resistance and many patients relapse and die of metastases within a few years. In this review, we summarize recent developments in the understanding of the mechanisms by which KP/KISS1R signaling plays an adverse role in TNBC. This includes focusing on how KISS1R signaling regulates the cell cytoskeleton to induce tumor invadopodia formation and how KISS1R communicates with growth factor receptors such as the epidermal growth factor receptor, the receptor tyrosine kinase AXL, and transforming growth factor-β to promote cell invasion, metastasis, and drug resistance.

 
  • References

  • 1 World Research Cancer Fund International. Available at: https://www.wcrf.org/ . Accessed December 13, 2019
  • 2 American Cancer Society. Available at: https://www.cancer.org/ . Accessed December 13, 2019
  • 3 Waks AG, Winer EP. Breast cancer treatment: a review. JAMA 2019; 321 (03) 288-300
  • 4 Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med 2010; 363 (20) 1938-1948
  • 5 Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 2019; 9 (02) 176-198
  • 6 Lee JH, Miele ME, Hicks DJ. , et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 1996; 88 (23) 1731-1737
  • 7 Biran J, Ben-Dor S, Levavi-Sivan B. Molecular identification and functional characterization of the kisspeptin/kisspeptin receptor system in lower vertebrates. Biol Reprod 2008; 79 (04) 776-786
  • 8 Kotani M, Detheux M, Vandenbogaerde A. , et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276 (37) 34631-34636
  • 9 Funes S, Hedrick JA, Vassileva G. , et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 2003; 312 (04) 1357-1363
  • 10 Seminara SB, Messager S, Chatzidaki EE. , et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003; 349 (17) 1614-1627
  • 11 Kirby HR, Maguire JJ, Colledge WH, Davenport AP. International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution, and function. Pharmacol Rev 2010; 62 (04) 565-578
  • 12 George JT, Veldhuis JD, Roseweir AK. , et al. Kisspeptin-10 is a potent stimulator of LH and increases pulse frequency in men. J Clin Endocrinol Metab 2011; 96 (08) E1228-E1236
  • 13 Messager S, Chatzidaki EE, Ma D. , et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A 2005; 102 (05) 1761-1766
  • 14 Min L, Soltis K, Reis AC. , et al. Dynamic kisspeptin receptor trafficking modulates kisspeptin-mediated calcium signaling. Mol Endocrinol 2014; 28 (01) 16-27
  • 15 Cvetković D, Babwah AV, Bhattacharya M. Kisspeptin/KISS1R system in breast cancer. J Cancer 2013; 4 (08) 653-661
  • 16 Guzman S, Brackstone M, Radovick S, Babwah AV, Bhattacharya MM. KISS1/KISS1R in cancer: friend or foe?. Front Endocrinol (Lausanne) 2018; 9: 437
  • 17 Cho SG, Li D, Tan K, Siwko SK, Liu M. KiSS1 and its G-protein-coupled receptor GPR54 in cancer development and metastasis. Cancer Metastasis Rev 2012; 31 (3-4): 585-591
  • 18 Corno C, Perego P. KiSS1 in regulation of metastasis and response to antitumor drugs. Drug Resist Updat 2019; 42: 12-21
  • 19 Cvetkovic D, Dragan M, Leith SJ. , et al. KISS1R induces invasiveness of estrogen receptor-negative human mammary epithelial and breast cancer cells. Endocrinology 2013; 154 (06) 1999-2014
  • 20 Chen S, Chen W, Zhang X, Lin S, Chen Z. Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-κB signal pathway. Int J Oncol 2016; 48 (04) 1391-1398
  • 21 Li N, Wang HX, Zhang J, Ye YP, He GY. KISS-1 inhibits the proliferation and invasion of gastric carcinoma cells. World J Gastroenterol 2012; 18 (15) 1827-1833
  • 22 Zhang Y, Tang YJ, Li ZH, Pan F, Huang K, Xu GH. KiSS1 inhibits growth and invasion of osteosarcoma cells through inhibition of the MAPK pathway. Eur J Histochem 2013; 57 (04) e30
  • 23 Cebrian V, Fierro M, Orenes-Piñero E. , et al. KISS1 methylation and expression as tumor stratification biomarkers and clinical outcome prognosticators for bladder cancer patients. Am J Pathol 2011; 179 (02) 540-546
  • 24 Chen SQ, Chen ZH, Lin SY, Dai QB, Fu LX, Chen RQ. KISS1 methylation and expression as predictors of disease progression in colorectal cancer patients. World J Gastroenterol 2014; 20 (29) 10071-10081
  • 25 Lee JH, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res 1997; 57 (12) 2384-2387
  • 26 Ross DT, Scherf U, Eisen MB. , et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 2000; 24 (03) 227-235
  • 27 Ellison G, Klinowska T, Westwood RF, Docter E, French T, Fox JC. Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 2002; 55 (05) 294-299
  • 28 Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD. MDA-MB-435 cells are derived from M14 melanoma cells--a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 2007; 104 (01) 13-19
  • 29 Uribesalgo I, Benitah SA, Di Croce L. From oncogene to tumor suppressor: the dual role of Myc in leukemia. Cell Cycle 2012; 11 (09) 1757-1764
  • 30 Zadra G, Batista JL, Loda M. Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol Cancer Res 2015; 13 (07) 1059-1072
  • 31 Bachman KE, Park BH. Duel nature of TGF-beta signaling: tumor suppressor vs. tumor promoter. Curr Opin Oncol 2005; 17 (01) 49-54
  • 32 Perkins ND. NF-kappaB: tumor promoter or suppressor?. Trends Cell Biol 2004; 14 (02) 64-69
  • 33 Bissell MJ. Context matters. Trends Cancer 2015; 1 (01) 6-8
  • 34 Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer 2006; 6 (06) 449-458
  • 35 Patanaphan V, Salazar OM, Risco R. Breast cancer: metastatic patterns and their prognosis. South Med J 1988; 81 (09) 1109-1112
  • 36 Welch DR, Steeg PS, Rinker-Schaeffer CW. Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res 2000; 2 (06) 408-416
  • 37 Martin TA, Watkins G, Jiang WG. KiSS-1 expression in human breast cancer. Clin Exp Metastasis 2005; 22 (06) 503-511
  • 38 Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 2010; 15 (02) 117-134
  • 39 Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392 (6672): 190-193
  • 40 Hunter KW, Crawford NP, Alsarraj J. Mechanisms of metastasis. Breast Cancer Res 2008; 10 (Suppl. 01) S2
  • 41 Katt ME, Wong AD, Searson PC. Dissemination from a solid tumor: examining the multiple parallel pathways. Trends Cancer 2018; 4 (01) 20-37
  • 42 Buccione R, Caldieri G, Ayala I. Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev 2009; 28 (1-2): 137-149
  • 43 Oser M, Condeelis J. The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem 2009; 108 (06) 1252-1262
  • 44 Yamaguchi H. Pathological roles of invadopodia in cancer invasion and metastasis. Eur J Cell Biol 2012; 91 (11-12): 902-907
  • 45 Eckert MA, Lwin TM, Chang AT. , et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 2011; 19 (03) 372-386
  • 46 Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J. N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci 2012; 125 (Pt 3): 724-734
  • 47 Meirson T, Gil-Henn H. Targeting invadopodia for blocking breast cancer metastasis. Drug Resist Updat 2018; 39: 1-17
  • 48 Perou CM, Sørlie T, Eisen MB. , et al. Molecular portraits of human breast tumours. Nature 2000; 406 (6797): 747-752
  • 49 Sulaiman A, McGarry S, Han X, Liu S, Wang L. CSCs in breast cancer-one size does not fit all: therapeutic advances in targeting heterogeneous epithelial and mesenchymal CSCs. Cancers (Basel) 2019; 11 (08) E1128
  • 50 McCann KE, Hurvitz SA, McAndrew N. Advances in targeted therapies for triple-negative breast cancer. Drugs 2019; 79 (11) 1217-1230
  • 51 Robson M, Im SA, Senkus E. , et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 2017; 377 (06) 523-533
  • 52 Schmid P, Adams S, Rugo HS. , et al; IMpassion130 Trial Investigators. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379 (22) 2108-2121
  • 53 Planes-Laine G, Rochigneux P, Bertucci F. , et al. PD-1/PD-L1 targeting in breast cancer: the first clinical evidences are emerging. a literature review. Cancers (Basel) 2019; 11 (07) E1033
  • 54 Soundararajan R, Fradette JJ, Konen JM. , et al. Targeting the interplay between epithelial-to-mesenchymal-transition and the immune system for effective immunotherapy. Cancers (Basel) 2019; 11 (05) E714
  • 55 Mohamad Hanif EA, Shah SA. Overview on epigenetic re-programming: a potential therapeutic intervention in triple negative breast cancers. Asian Pac J Cancer Prev 2018; 19 (12) 3341-3351
  • 56 Cho SG, Wang Y, Rodriguez M. , et al. Haploinsufficiency in the prometastasis Kiss1 receptor Gpr54 delays breast tumor initiation, progression, and lung metastasis. Cancer Res 2011; 71 (20) 6535-6546
  • 57 Fantozzi A, Christofori G. Mouse models of breast cancer metastasis. Breast Cancer Res 2006; 8 (04) 212
  • 58 Lin EY, Jones JG, Li P. , et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 2003; 163 (05) 2113-2126
  • 59 Stingl J. Estrogen and progesterone in normal mammary gland development and in cancer. Horm Cancer 2011; 2 (02) 85-90
  • 60 Clarke RB, Anderson E, Howell A. Steroid receptors in human breast cancer. Trends Endocrinol Metab 2004; 15 (07) 316-323
  • 61 Al Saleh S, Al Mulla F, Luqmani YA. Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS One 2011; 6 (06) e20610
  • 62 Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 2005; 146 (09) 3686-3692
  • 63 Marot D, Bieche I, Aumas C. , et al. High tumoral levels of Kiss1 and G-protein-coupled receptor 54 expression are correlated with poor prognosis of estrogen receptor-positive breast tumors. Endocr Relat Cancer 2007; 14 (03) 691-702
  • 64 Papaoiconomou E, Lymperi M, Petraki C. , et al. Kiss-1/GPR54 protein expression in breast cancer. Anticancer Res 2014; 34 (03) 1401-1407
  • 65 Blake A, Dragan M, Tirona RG. , et al. G protein-coupled KISS1 receptor is overexpressed in triple negative breast cancer and promotes drug resistance. Sci Rep 2017; 7: 46525
  • 66 Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 2002; 111 (01) 29-40
  • 67 Soule HD, Maloney TM, Wolman SR. , et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 1990; 50 (18) 6075-6086
  • 68 Underwood JM, Imbalzano KM, Weaver VM, Fischer AH, Imbalzano AN, Nickerson JA. The ultrastructure of MCF-10A acini. J Cell Physiol 2006; 208 (01) 141-148
  • 69 Rodriguez-Monterrosas C, Díaz-Aragon R, Leal-Orta E, Cortes-Reynosa P, Perez Salazar E. Insulin induces an EMT-like process in mammary epithelial cells MCF10A. J Cell Biochem 2018; 119 (05) 4061-4071
  • 70 Zhang J, Tian XJ, Zhang H. , et al. TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 2014; 7 (345) ra91
  • 71 Li S, Zhou J, Wu H. , et al. Oncogenic transformation of normal breast epithelial cells co-cultured with cancer cells. Cell Cycle 2018; 17 (16) 2027-2040
  • 72 Goertzen CG, Dragan M, Turley E, Babwah AV, Bhattacharya M. KISS1R signaling promotes invadopodia formation in human breast cancer cell via β-arrestin2/ERK. Cell Signal 2016; 28 (03) 165-176
  • 73 Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol 2012; 226 (02) 380-393
  • 74 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144 (05) 646-674
  • 75 Noonan MM, Dragan M, Mehta MM. , et al. The matrix protein Fibulin-3 promotes KISS1R induced triple negative breast cancer cell invasion. Oncotarget 2018; 9 (53) 30034-30052
  • 76 Tian J, Al-Odaini AA, Wang Y. , et al. KiSS1 gene as a novel mediator of TGFβ-mediated cell invasion in triple negative breast cancer. Cell Signal 2018; 42: 1-10
  • 77 Rasoulzadeh Z, Ghods R, Kazemi T. , et al. Placental kisspeptins differentially modulate vital parameters of estrogen receptor-positive and -negative breast cancer cells. PLoS One 2016; 11 (04) e0153684
  • 78 Goertzen CF, Dragan M, Turley E, Bhattacharya M. KISS1R signaling promotes human triple negative breast cancer tumorigenesis and invadopodia formation via beta-arrestin2/ERK Cellular signalling. Cell Signal 2016; 28 (03) 165-176
  • 79 Zajac M, Law J, Cvetkovic DD. , et al. GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One 2011; 6 (06) e21599
  • 80 Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 2003; 284 (01) 31-53
  • 81 de Ruijter TC, Veeck J, de Hoon JP, van Engeland M, Tjan-Heijnen VC. Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol 2011; 137 (02) 183-192
  • 82 Toi M, Osaki A, Yamada H, Toge T. Epidermal growth factor receptor expression as a prognostic indicator in breast cancer. Eur J Cancer 1991; 27 (08) 977-980
  • 83 Flågeng MH, Knappskog S, Haynes BP, Lønning PE, Mellgren G. Inverse regulation of EGFR/HER1 and HER2-4 in normal and malignant human breast tissue. PLoS One 2013; 8 (08) e74618
  • 84 Sohn J, Liu S, Parinyanitikul N. , et al. cMET activation and EGFR-directed therapy resistance in triple-negative breast cancer. J Cancer 2014; 5 (09) 745-753
  • 85 Timpl R, Sasaki T, Kostka G, Chu ML. Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol 2003; 4 (06) 479-489
  • 86 Qadir F, Aziz MA, Sari CP. , et al. Transcriptome reprogramming by cancer exosomes: identification of novel molecular targets in matrix and immune modulation. Mol Cancer 2018; 17 (01) 97
  • 87 Horikoshi Y, Matsumoto H, Takatsu Y. , et al. Dramatic elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-derived hormone in humans. J Clin Endocrinol Metab 2003; 88 (02) 914-919
  • 88 Dhillo WS, Murphy KG, Bloom SR. The neuroendocrine physiology of kisspeptin in the human. Rev Endocr Metab Disord 2007; 8 (01) 41-46
  • 89 Bhattacharya M, Babwah AV. Kisspeptin: beyond the brain. Endocrinology 2015; 156 (04) 1218-1227
  • 90 Gu G, Dustin D, Fuqua SA. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr Opin Pharmacol 2016; 31: 97-103
  • 91 Crown J, O'Shaughnessy J, Gullo G. Emerging targeted therapies in triple-negative breast cancer. Ann Oncol 2012; 23 (Suppl. 06) vi56-vi65
  • 92 Britton KM, Eyre R, Harvey IJ. , et al. Breast cancer, side population cells and ABCG2 expression. Cancer Lett 2012; 323 (01) 97-105
  • 93 Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 2012; 83 (08) 1084-1103
  • 94 Meyer AS, Miller MA, Gertler FB, Lauffenburger DA. The receptor AXL diversifies EGFR signaling and limits the response to EGFR-targeted inhibitors in triple-negative breast cancer cells. Sci Signal 2013; 6 (287) ra66
  • 95 Wu X, Zahari MS, Ma B. , et al. Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways. Oncotarget 2015; 6 (30) 29143-29160
  • 96 Antony J, Huang RY. AXL-driven EMT state as a targetable conduit in cancer. Cancer Res 2017; 77 (14) 3725-3732
  • 97 Wu X, Liu X, Koul S, Lee CY, Zhang Z, Halmos B. AXL kinase as a novel target for cancer therapy. Oncotarget 2014; 5 (20) 9546-9563
  • 98 Gorcea CM, Burthem J, Tholouli E. ASP2215 in the treatment of relapsed/refractory acute myeloid leukemia with FLT3 mutation: background and design of the ADMIRAL trial. Future Oncol 2018; 14 (20) 1995-2004
  • 99 Chia SK, Ellard SL, Mates M. , et al. A phase-I study of lapatinib in combination with foretinib, a c-MET, AXL and vascular endothelial growth factor receptor inhibitor, in human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer. Breast Cancer Res 2017; 19 (01) 54
  • 100 Wakelee HA, Gettinger S, Engelman J. , et al. A phase Ib/II study of cabozantinib (XL184) with or without erlotinib in patients with non-small cell lung cancer. Cancer Chemother Pharmacol 2017; 79 (05) 923-932
  • 101 Jiffar T, Yilmaz T, Lee J. , et al. KiSS1 mediates platinum sensitivity and metastasis suppression in head and neck squamous cell carcinoma. Oncogene 2011; 30 (28) 3163-3173
  • 102 Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50 (01) 33
  • 103 Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res 2019; 79 (18) 4557-4566
  • 104 Panigrahi DP, Praharaj PP, Bhol CS. , et al. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin Cancer Biol 2019; S1044-579X(19)30115-4
  • 105 Voorwerk L, Slagter M, Horlings HM. , et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med 2019; 25 (06) 920-928
  • 106 Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics 2009; 1 (02) 239-259
  • 107 Saito Y, Jones PA. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 2006; 5 (19) 2220-2222
  • 108 Jeong HM, Kwon MJ, Shin YK. Overexpression of cancer-associated genes via epigenetic derepression mechanisms in gynecologic cancer. Front Oncol 2014; 4: 12