Thromb Haemost 2020; 120(02): 329-343
DOI: 10.1055/s-0039-3400304
Atherosclerosis and Ischaemic Disease
Georg Thieme Verlag KG Stuttgart · New York

Thromboxane A2 Synthase and Thromboxane Receptor Deletion Reduces Ischaemia/Reperfusion-Evoked Inflammation, Apoptosis, Autophagy and Pyroptosis

Tsung-Hung Chueh
1   Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
,
Yu-Hsiuan Cheng
1   Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
,
Kuo-Hsin Chen*
2   Division of General Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
3   Department of Electrical Engineering, Yuan Ze University, Taoyuan City, Taiwan
,
Chiang-Ting Chien*
1   Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
› Institutsangaben
Funding This work was supported by grant MOST-102–2320-B-003–001-MY3 (to C.-T.C.) and a research fund from the Far-Eastern Memorial Hospital (to K.-H.C.).
Weitere Informationen

Publikationsverlauf

24. April 2019

03. Oktober 2019

Publikationsdatum:
30. November 2019 (online)

Abstract

Aim Enhancement of thromboxane A2 (TXA2) synthase (TXAS) activity, TXA2 release, and thromboxane prostanoid (TP) receptor activation leads to vasoconstriction and oxidative injury. We explored whether genetic deletion of TXAS/TXA2/TP signalling may reduce renal ischaemia/reperfusion (I/R) injury in mice.

Materials and Methods Renal haemodynamics and function were evaluated in TXAS+/+TP+/+ (wild-type, WT), TXAS−/− (TXS−/−), TP−/− and TXAS−/−TP−/− (double knockout, dKO) mice in response to intravenous TXA2 mimetic-U46619 and 45-minute renal ischaemia and 4-hour reperfusion injury. We examined renal TXAS and TP expression, blood urea nitrogen (BUN) and creatinine, reactive oxygen species (ROS) amount, pro-inflammatory cytokines and pathophysiologic mechanisms, including apoptosis, autophagy and pyroptosis under I/R injury.

Results Renal I/R enhanced the levels of TXAS, TP, nuclear factor-κB, nicotinamide adenine dinucleotide phosphate oxidase gp91, Bax/Bcl-2/caspase-3/apoptosis, Beclin-1/LC3-II/autophagy, caspase-1/gasdermin D/interleukin-1β/pyroptosis, renal thromboxane B2 (TXB2) concentration, ROS amount, plasma BUN, creatinine and TXB2 and decreased renal endothelial nitric oxide synthase expression in WT mice. All these enhanced parameters were significantly decreased in three KO mice. Intravenous U46619 significantly decreased renal microcirculation and enhanced gp91 and Bax/Bcl-2 in WT and TXS−/− but not TP−/− in dKO mice. I/R significantly decreased renal microcirculation in all mice; however, the time for recovery to baseline renal blood flow level was significantly shortened in TXS−/−, TP−/−and dKO mice versus WT mice. Blockade of TXAS/TP signalling attenuated I/R-enhanced pro-inflammatory cytokine profile.

Conclusion Blockade of TXAS/TXA2/TP signalling confers renal protection against I/R injury through the actions of anti-oxidation, anti-inflammation, anti-apoptosis, anti-autophagy and anti-pyroptosis.

Authors' Contributions

Research idea and study design: T.H.C., Y.H.C., K.H.C., C.T.C.; data acquisition: T.H.C., Y.H.C.; data analysis/interpretation: T.H.C., K.H.C., C.T.C.; statistical analysis: T.H.C., C.T.C.; supervision or mentorship: K.H.C., C.T.C. Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.


* These senior authors contributed equally to this work.


Supplementary Material

 
  • Reference

  • 1 Hirata M, Hayashi Y, Ushikubi F. , et al. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 1991; 349 (6310): 617-620
  • 2 Boffa JJ, Just A, Coffman TM, Arendshorst WJ. Thromboxane receptor mediates renal vasoconstriction and contributes to acute renal failure in endotoxemic mice. J Am Soc Nephrol 2004; 15 (09) 2358-2365
  • 3 Sakariassen KS, Alberts P, Fontana P, Mann J, Bounameaux H, Sorensen AS. Effect of pharmaceutical interventions targeting thromboxane receptors and thromboxane synthase in cardiovascular and renal diseases. Future Cardiol 2009; 5 (05) 479-493
  • 4 Chiang CY, Chien CY, Qiou WY. , et al. Genetic depletion of thromboxane A2/thromboxane-prostanoid receptor signalling prevents microvascular dysfunction in ischaemia/reperfusion injury. Thromb Haemost 2018; 118 (11) 1982-1996
  • 5 Coleman RA, Smith WL, Narumiya S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994; 46 (02) 205-229
  • 6 Catella F, Healy D, Lawson JA, FitzGerald GA. 11-Dehydrothromboxane B2: a quantitative index of thromboxane A2 formation in the human circulation. Proc Natl Acad Sci U S A 1986; 83 (16) 5861-5865
  • 7 Reilly MP, Delanty N, Roy L. , et al. Increased formation of the isoprostanes IPF2α-I and 8-epi-prostaglandin F2α in acute coronary angioplasty: evidence for oxidant stress during coronary reperfusion in humans. Circulation 1997; 96 (10) 3314-3320
  • 8 McAdam BF, Mardini IA, Habib A. , et al. Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation. J Clin Invest 2000; 105 (10) 1473-1482
  • 9 Audoly LP, Rocca B, Fabre JE. , et al. Cardiovascular responses to the isoprostanes iPF(2α)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo. Circulation 2000; 101 (24) 2833-2840
  • 10 Stahl RA, Thaiss F, Wenzel U, Schoeppe W, Helmchen U. A rat model of progressive chronic glomerular sclerosis: the role of thromboxane inhibition. J Am Soc Nephrol 1992; 2 (11) 1568-1577
  • 11 Dogné JM, Hanson J, Pratico D. Thromboxane, prostacyclin and isoprostanes: therapeutic targets in atherogenesis. Trends Pharmacol Sci 2005; 26 (12) 639-644
  • 12 Vågnes ØB, Iversen BM, Arendshorst WJ. Short-term ANG II produces renal vasoconstriction independent of TP receptor activation and TxA2/isoprostane production. Am J Physiol Renal Physiol 2007; 293 (03) F860-F867
  • 13 Brien M, Larose J, Greffard K, Julien P, Bilodeau JF. Increased placental phospholipase A2 gene expression and free F2-isoprostane levels in response to oxidative stress in preeclampsia. Placenta 2017; 55: 54-62
  • 14 Cyrus T, Ding T, Praticò D. Expression of thromboxane synthase, prostacyclin synthase and thromboxane receptor in atherosclerotic lesions: correlation with plaque composition. Atherosclerosis 2010; 208 (02) 376-381
  • 15 Zhang M, Song P, Xu J, Zou MH. Activation of NAD(P)H oxidases by thromboxane A2 receptor uncouples endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 2011; 31 (01) 125-132
  • 16 Chien CT, Lee PH, Chen CF, Ma MC, Lai MK, Hsu SM. De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol 2001; 12 (05) 973-982
  • 17 Chien CT, Chang TC, Tsai CY, Shyue SK, Lai MK. Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am J Transplant 2005; 5 (06) 1194-1203
  • 18 Yang CC, Yao CA, Yang JC, Chien CT. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling. Toxicol Sci 2014; 141 (01) 155-165
  • 19 Perico N, Benigni A, Zoja C, Delaini F, Remuzzi G. Functional significance of exaggerated renal thromboxane A2 synthesis induced by cyclosporin A. Am J Physiol 1986; 251 (4 Pt 2): F581-F587
  • 20 Bresnahan BA, Dufek S, Wu S, Lianos EA. Changes in glomerular thromboxane A2 receptor expression and ligand binding following immune injury. Kidney Int 1999; 55 (01) 139-147
  • 21 Garvin PJ, Niehoff ML, Robinson SM. , et al. Evaluation of the thromboxane A2 synthetase inhibitor OKY-046 in a warm ischemia-reperfusion rat model. Transplantation 1996; 61 (10) 1429-1434
  • 22 Drouin A, Farhat N, Bolduc V. , et al. Up-regulation of thromboxane A2 impairs cerebrovascular eNOS function in aging atherosclerotic mice. Pflugers Arch 2011; 462 (03) 371-383
  • 23 Basili S, Pignatelli P, Tanzilli G. , et al. Anoxia-reoxygenation enhances platelet thromboxane A2 production via reactive oxygen species-generated NOX2: effect in patients undergoing elective percutaneous coronary intervention. Arterioscler Thromb Vasc Biol 2011; 31 (08) 1766-1771
  • 24 Oates JC, Halushka PV, Hutchison FN, Ruiz P, Gilkeson GS. Selective cyclooxygenase-2 inhibitor suppresses renal thromboxane production but not proliferative lesions in the MRL/lpr murine model of lupus nephritis. Am J Med Sci 2011; 341 (02) 101-105
  • 25 Massberg S, Brand K, Grüner S. , et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196 (07) 887-896
  • 26 Hur M, Koo CH, Lee HC. , et al. Preoperative aspirin use and acute kidney injury after cardiac surgery: a propensity-score matched observational study. PLoS One 2017; 12 (05) e0177201
  • 27 Yu IS, Lin SR, Huang CC. , et al. TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death. Blood 2004; 104 (01) 135-142
  • 28 Patrono C. Biosynthesis and pharmacological modulation of thromboxane in humans. Circulation 1990; 81 (1, Suppl): I12-I15
  • 29 Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73 (04) 1907-1916
  • 30 Mederle K, Meurer M, Castrop H, Höcherl K. Inhibition of COX-1 attenuates the formation of thromboxane A2 and ameliorates the acute decrease in glomerular filtration rate in endotoxemic mice. Am J Physiol Renal Physiol 2015; 309 (04) F332-F340
  • 31 Wagner M, Cadetg P, Ruf R, Mazzucchelli L, Ferrari P, Redaelli CA. Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int 2003; 63 (04) 1564-1573
  • 32 Asano K, Taniguchi S, Nakao A, Maruyama T, Watanabe T, Kurokawa K. Distribution of thromboxane A2 receptor mRNA along the mouse nephron segments. Biochem Biophys Res Commun 1996; 226 (03) 613-617
  • 33 Bresnahan BA, Le Breton GC, Lianos EA. Localization of authentic thromboxane A2/prostaglandin H2 receptor in the rat kidney. Kidney Int 1996; 49 (05) 1207-1213
  • 34 Moss NG, Vogel PA, Kopple TE, Arendshorst WJ. Thromboxane-induced renal vasoconstriction is mediated by the ADP-ribosyl cyclase CD38 and superoxide anion. Am J Physiol Renal Physiol 2013; 305 (06) F830-F838
  • 35 Lee DH, Cho HJ, Kang HY, Rhee MH, Park HJ. Total saponin from Korean red ginseng inhibits thromboxane A2 production associated microsomal enzyme activity in platelets. J Ginseng Res 2012; 36 (01) 40-46
  • 36 Pignatelli P, Carnevale R, Di Santo S. , et al. Inherited human gp91phox deficiency is associated with impaired isoprostane formation and platelet dysfunction. Arterioscler Thromb Vasc Biol 2011; 31 (02) 423-434
  • 37 Rong S, Hueper K, Kirsch T. , et al. Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation. Am J Physiol Renal Physiol 2014; 307 (06) F718-F726
  • 38 Thomas DW, Mannon RB, Mannon PJ. , et al. Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. J Clin Invest 1998; 102 (11) 1994-2001
  • 39 Weight SC, Waller JR, Bradley V, Whiting PH, Nicholson ML. Interaction of eicosanoids and nitric oxide in renal reperfusion injury. Transplantation 2001; 72 (04) 614-619
  • 40 Myers SI, Wang L, Liu F, Bartula LL. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping. J Vasc Surg 2006; 43 (03) 577-586
  • 41 Voisin V, Declèves AE, Hubert V. , et al. Protection of Wistar-Furth rats against postischaemic acute renal injury: role for nitric oxide and thromboxane?. Clin Exp Pharmacol Physiol 2014; 41 (11) 911-920
  • 42 Wang D, Chabrashvili T, Wilcox CS. Enhanced contractility of renal afferent arterioles from angiotensin-infused rabbits: roles of oxidative stress, thromboxane prostanoid receptors, and endothelium. Circ Res 2004; 94 (11) 1436-1442
  • 43 Takahashi K, Nammour TM, Fukunaga M. , et al. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest 1992; 90 (01) 136-141
  • 44 Klausner JM, Paterson IS, Kobzik L. , et al. Vasodilating prostaglandins attenuate ischemic renal injury only if thromboxane is inhibited. Ann Surg 1989; 209 (02) 219-224
  • 45 Cyrus T, Yao Y, Ding T, Dogné JM, Praticò D. Thromboxane receptor blockade improves the antiatherogenic effect of thromboxane A2 suppression in LDLR KO mice. Blood 2007; 109 (08) 3291-3296