Semin Thromb Hemost 2020; 46(05): 563-586
DOI: 10.1055/s-0039-1701019
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Recent Advances in the Molecular Imaging of Atherosclerosis

Mélusine Larivière
1   University of Tours, Tours, France
,
Samuel Bonnet
2   Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Universite de Bordeaux, Bordeaux, France
,
Cyril Lorenzato
2   Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Universite de Bordeaux, Bordeaux, France
,
Jeanny Laroche-Traineau
2   Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Universite de Bordeaux, Bordeaux, France
,
Florence Ottonès
2   Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Universite de Bordeaux, Bordeaux, France
,
Marie-Josée Jacobin-Valat
2   Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Universite de Bordeaux, Bordeaux, France
,
Gisèle Clofent-Sanchez
2   Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Universite de Bordeaux, Bordeaux, France
› Author Affiliations
Funding This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-0057 and was also supported by a public grant from the French “Agence Nationale de la Recherche” (ANR-13-BSV5–0018 SVSE5).
Further Information

Publication History

Publication Date:
30 June 2020 (online)

Abstract

Atherosclerosis is the major underlying cause of cardiovascular diseases, the prevalence of which is continuously increasing, thus currently standing as the leading global cause of death. This pathology gradually develops over the course of 50 or more years throughout the life of an individual under the influence of a vast number of factors, both environmental and pathophysiological. This wealth of factors has elicited much research into molecular imaging, with purely diagnostic purposes or with the hope of engineering an efficient theranostic tool. To these ends, diverse nanomaterials with desirable, tunable properties have been explored by different teams, as described in this review.

 
  • References

  • 1 Benjamin EJ, Blaha MJ, Chiuve SE. , et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2017 Update: a report from the American Heart Association. Circulation 2017; 135 (10) e146-e603
  • 2 Insull Jr W. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med 2009; 122 (1, Suppl): S3-S14
  • 3 Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006; 47 (8, Suppl): C7-C12
  • 4 Libby P, Pasterkamp G. Requiem for the 'vulnerable plaque'. Eur Heart J 2015; 36 (43) 2984-2987
  • 5 Newby AC, Zaltsman AB. Fibrous cap formation or destruction--the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 1999; 41 (02) 345-360
  • 6 Matsuzawa Y, Hibi K, Saka K. , et al. Association of endothelial function with thin-cap fibroatheroma as assessed by optical coherence tomography in patients with acute coronary syndromes. Ther Clin Risk Manag 2019; 15: 285-291
  • 7 Doherty TM, Asotra K, Fitzpatrick LA. , et al. Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci U S A 2003; 100 (20) 11201-11206
  • 8 Virmani R, Kolodgie FD, Burke AP. , et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005; 25 (10) 2054-2061
  • 9 Moreno PR, Purushothaman M, Purushothaman KR. Plaque neovascularization: defense mechanisms, betrayal, or a war in progress. Ann N Y Acad Sci 2012; 1254: 7-17
  • 10 Guo M, Cai Y, Yao X, Li Z. Mathematical modeling of atherosclerotic plaque destabilization: role of neovascularization and intraplaque hemorrhage. J Theor Biol 2018; 450: 53-65
  • 11 Dweck MR, Aikawa E, Newby DE. , et al. Noninvasive molecular imaging of disease activity in atherosclerosis. Circ Res 2016; 119 (02) 330-340
  • 12 Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol 2015; 65 (08) 846-855
  • 13 Bittencourt MS, Hulten E, Ghoshhajra B. , et al. Prognostic value of nonobstructive and obstructive coronary artery disease detected by coronary computed tomography angiography to identify cardiovascular events. Circ Cardiovasc Imaging 2014; 7 (02) 282-291
  • 14 Taqueti VR, Hachamovitch R, Murthy VL. , et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation 2015; 131 (01) 19-27
  • 15 Tarkin JM, Dweck MR, Evans NR. , et al. Imaging atherosclerosis. Circ Res 2016; 118 (04) 750-769
  • 16 Puri R, Worthley MI, Nicholls SJ. Intravascular imaging of vulnerable coronary plaque: current and future concepts. Nat Rev Cardiol 2011; 8 (03) 131-139
  • 17 Mintz GS. Clinical utility of intravascular imaging and physiology in coronary artery disease. J Am Coll Cardiol 2014; 64 (02) 207-222
  • 18 DeMaria AN, Narula J, Mahmud E, Tsimikas S. Imaging vulnerable plaque by ultrasound. J Am Coll Cardiol 2006; 47 (8, Suppl): C32-C39
  • 19 Ma T, Yu M, Li J. , et al. Multi-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2015; 62 (01) 97-107
  • 20 Kotani J, Mintz GS, Castagna MT. , et al. Intravascular ultrasound analysis of infarct-related and non-infarct-related arteries in patients who presented with an acute myocardial infarction. Circulation 2003; 107 (23) 2889-2893
  • 21 Ehara S, Kobayashi Y, Yoshiyama M. , et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 2004; 110 (22) 3424-3429
  • 22 Kubo T, Maehara A, Mintz GS. , et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol 2010; 55 (15) 1590-1597
  • 23 Motreff P, Rioufol G, Finet G. Seventy-four-month follow-up of coronary vulnerable plaques by serial gray-scale intravascular ultrasound. Circulation 2012; 126 (24) 2878-2879
  • 24 Farooq V, Serruys PW, Heo JH. , et al. Intracoronary optical coherence tomography and histology of overlapping everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: the potential implications for clinical practice. JACC Cardiovasc Interv 2013; 6 (05) 523-532
  • 25 Jang IK, Bouma BE, Kang DH. , et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 2002; 39 (04) 604-609
  • 26 Uemura S, Ishigami K, Soeda T. , et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J 2012; 33 (01) 78-85
  • 27 Tearney GJ, Regar E, Akasaka T. , et al; International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT). Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 2012; 59 (12) 1058-1072
  • 28 Zhu S, Yang Q, Antaris AL. , et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci U S A 2017; 114 (05) 962-967
  • 29 Gallino A, Stuber M, Crea F. , et al. “In vivo” imaging of atherosclerosis. Atherosclerosis 2012; 224 (01) 25-36
  • 30 Phinikaridou A, Andia ME, Lacerda S, Lorrio S, Makowski MR, Botnar RM. Molecular MRI of atherosclerosis. Molecules 2013; 18 (11) 14042-14069
  • 31 Corti R, Fuster V. Imaging of atherosclerosis: magnetic resonance imaging. Eur Heart J 2011; 32 (14) 1709-19b
  • 32 Hatsukami TS, Yuan C. MRI in the early identification and classification of high-risk atherosclerotic carotid plaques. Imaging Med 2010; 2 (01) 63-75
  • 33 Kramer CM, Anderson JD. MRI of atherosclerosis: diagnosis and monitoring therapy. Expert Rev Cardiovasc Ther 2007; 5 (01) 69-80
  • 34 Silvera SS, Aidi HE, Rudd JH. , et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis 2009; 207 (01) 139-143
  • 35 Rudd JH, Warburton EA, Fryer TD. , et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002; 105 (23) 2708-2711
  • 36 Wenning C, Kloth C, Kuhlmann MT. , et al. Serial F-18-FDG PET/CT distinguishes inflamed from stable plaque phenotypes in shear-stress induced murine atherosclerosis. Atherosclerosis 2014; 234 (02) 276-282
  • 37 Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I. Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: suggestions for improvement. J Nucl Med 2015; 56 (04) 552-559
  • 38 Blomberg BA, Thomassen A, Takx RA. , et al. Delayed 18F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation: results from the CAMONA study. J Nucl Cardiol 2014; 21 (03) 588-597
  • 39 Mazurek T, Kobylecka M, Zielenkiewicz M. , et al. PET/CT evaluation of 18F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: independent predictor of atherosclerotic lesions' formation?. J Nucl Cardiol 2017; 24 (03) 1075-1084
  • 40 Tahara N, Mukherjee J, de Haas HJ. , et al. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med 2014; 20 (02) 215-219
  • 41 New SE, Goettsch C, Aikawa M. , et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res 2013; 113 (01) 72-77
  • 42 Irkle A, Vesey AT, Lewis DY. , et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun 2015; 6: 7495
  • 43 Joshi NV, Vesey AT, Williams MC. , et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 2014; 383 (9918): 705-713
  • 44 Oliveira-Santos M, Castelo-Branco M, Silva R. , et al. Atherosclerotic plaque metabolism in high cardiovascular risk subjects - A subclinical atherosclerosis imaging study with 18F-NaF PET-CT. Atherosclerosis 2017; 260: 41-46
  • 45 Aikawa E, Nahrendorf M, Figueiredo JL. , et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 2007; 116 (24) 2841-2850
  • 46 Ye YX, Calcagno C, Binderup T. , et al. Imaging macrophage and hematopoietic progenitor proliferation in atherosclerosis. Circ Res 2015; 117 (10) 835-845
  • 47 Chen J, Tung CH, Mahmood U. , et al. In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002; 105 (23) 2766-2771
  • 48 Lin SA, Patel M, Suresch D. , et al. Quantitative longitudinal imaging of vascular inflammation and treatment by ezetimibe in apoE mice by FMT using new optical imaging biomarkers of cathepsin activity and α(v)β(3) integrin. Int J Mol Imaging 2012; 2012: 189254
  • 49 Jaffer FA, Calfon MA, Rosenthal A. , et al. Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. J Am Coll Cardiol 2011; 57 (25) 2516-2526
  • 50 Suter MJ, Nadkarni SK, Weisz G. , et al. Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging 2011; 4 (09) 1022-1039
  • 51 Yoneya S, Saito T, Komatsu Y, Koyama I, Takahashi K, Duvoll-Young J. Binding properties of indocyanine green in human blood. Invest Ophthalmol Vis Sci 1998; 39 (07) 1286-1290
  • 52 Wang H, Gardecki JA, Ughi GJ, Jacques PV, Hamidi E, Tearney GJ. Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm. Biomed Opt Express 2015; 6 (04) 1363-1375
  • 53 Ughi GJ, Wang H, Gerbaud E. , et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging. JACC Cardiovasc Imaging 2016; 9 (11) 1304-1314
  • 54 Haka AS, Kramer JR, Dasari RR, Fitzmaurice M. Mechanism of ceroid formation in atherosclerotic plaque: in situ studies using a combination of Raman and fluorescence spectroscopy. J Biomed Opt 2011; 16 (01) 011011
  • 55 Malencik DA, Anderson SR. Dityrosine as a product of oxidative stress and fluorescent probe. Amino Acids 2003; 25 (3-4): 233-247
  • 56 Yang YL, Ye YM, Li FM, Li YF, Ma PZ. Characteristic autofluorescence for cancer diagnosis and its origin. Lasers Surg Med 1987; 7 (06) 528-532
  • 57 Weissleder R, Mahmood U. Molecular imaging. Radiology 2001; 219 (02) 316-333
  • 58 Stein-Merlob AF, Hara T, McCarthy JR. , et al. Atheroma susceptible to thrombosis exhibit impaired endothelial permeability in vivo as assessed by nanoparticle-based fluorescence molecular imaging. Circ Cardiovasc Imaging 2017; 10 (05) 10
  • 59 Vinegoni C, Botnaru I, Aikawa E. , et al. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med 2011; 3 (84) 84ra45
  • 60 Hara T, Ughi GJ, McCarthy JR. , et al. Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo. Eur Heart J 2017; 38 (06) 447-455
  • 61 Khamis RY, Woollard KJ, Hyde GD. , et al. Near infrared fluorescence (NIRF) molecular imaging of oxidized LDL with an autoantibody in experimental atherosclerosis. Sci Rep 2016; 6: 21785
  • 62 Yoo H, Kim JW, Shishkov M. , et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med 2011; 17 (12) 1680-1684
  • 63 Lee S, Lee MW, Cho HS. , et al. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels. Circ Cardiovasc Interv 2014; 7 (04) 560-569
  • 64 Kim S, Lee MW, Kim TS. , et al. Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery. Eur Heart J 2016; 37 (37) 2833-2844
  • 65 Verjans JW, Osborn EA, Ughi GJ. , et al. Targeted near-infrared fluorescence imaging of atherosclerosis: clinical and intracoronary evaluation of indocyanine green. JACC Cardiovasc Imaging 2016; 9 (09) 1087-1095
  • 66 Millon A, Dickson SD, Klink A. , et al. Monitoring plaque inflammation in atherosclerotic rabbits with an iron oxide (P904) and (18)F-FDG using a combined PET/MR scanner. Atherosclerosis 2013; 228 (02) 339-345
  • 67 Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol 2015; 209 (01) 13-22
  • 68 Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 2014; 114 (10) 1640-1660
  • 69 Cole JE, Park I, Ahern DJ. , et al. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res 2018; 114 (10) 1360-1371
  • 70 Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013; 13 (10) 709-721
  • 71 Briley-Saebo KC, Mani V, Hyafil F, Cornily JC, Fayad ZA. Fractionated Feridex and positive contrast: in vivo MR imaging of atherosclerosis. Magn Reson Med 2008; 59 (04) 721-730
  • 72 Briley-Saebo KC, Amirbekian V, Mani V. , et al. Gadolinium mixed-micelles: effect of the amphiphile on in vitro and in vivo efficacy in apolipoprotein E knockout mouse models of atherosclerosis. Magn Reson Med 2006; 56 (06) 1336-1346
  • 73 Maiseyeu A, Mihai G, Kampfrath T. , et al. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J Lipid Res 2009; 50 (11) 2157-2163
  • 74 Kooi ME, Cappendijk VC, Cleutjens KB. , et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003; 107 (19) 2453-2458
  • 75 Tang TY, Howarth SP, Miller SR. , et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 2009; 53 (22) 2039-2050
  • 76 van Heeswijk RB, Pellegrin M, Flögel U. , et al. Fluorine MR imaging of inflammation in atherosclerotic plaque in vivo. Radiology 2015; 275 (02) 421-429
  • 77 Chhour P, Naha PC, O'Neill SM. , et al. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials 2016; 87: 93-103
  • 78 Tsuchiya K, Nitta N, Sonoda A. , et al. Atherosclerotic imaging using 4 types of superparamagnetic iron oxides: new possibilities for mannan-coated particles. Eur J Radiol 2013; 82 (11) 1919-1925
  • 79 Tu C, Ng TS, Jacobs RE, Louie AY. Multimodality PET/MRI agents targeted to activated macrophages. J Biol Inorg Chem 2014; 19 (02) 247-258
  • 80 Keliher EJ, Ye YX, Wojtkiewicz GR. , et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat Commun 2017; 8: 14064
  • 81 Skajaa T, Cormode DP, Falk E, Mulder WJ, Fisher EA, Fayad ZA. High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30 (02) 169-176
  • 82 Kontush A. HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res 2014; 103 (03) 341-349
  • 83 Cormode DP, Frias JC, Ma Y. , et al. HDL as a contrast agent for medical imaging. Clin Lipidol 2009; 4 (04) 493-500
  • 84 Cormode DP, Skajaa T, van Schooneveld MM. , et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett 2008; 8 (11) 3715-3723
  • 85 Fay F, Sanchez-Gaytan BL, Cormode DP. , et al. Nanocrystal core lipoprotein biomimetics for imaging of lipoproteins and associated diseases. Curr Cardiovasc Imaging Rep 2013; 6 (01) 45-54
  • 86 Kuai R, Li D, Chen YE, Moon JJ, Schwendeman A. High-density lipoproteins: nature's multifunctional nanoparticles. ACS Nano 2016; 10 (03) 3015-3041
  • 87 Duivenvoorden R, Tang J, Cormode DP. , et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun 2014; 5: 3065
  • 88 Sanchez-Gaytan BL, Fay F, Lobatto ME. , et al. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjug Chem 2015; 26 (03) 443-451
  • 89 Tang J, Baxter S, Menon A. , et al. Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proc Natl Acad Sci U S A 2016; 113 (44) E6731-E6740
  • 90 Pérez-Medina C, Binderup T, Lobatto ME. , et al. In vivo PET imaging of HDL in multiple atherosclerosis models. JACC Cardiovasc Imaging 2016; 9 (08) 950-961
  • 91 Zheng KH, van der Valk FM, Smits LP. , et al. HDL mimetic CER-001 targets atherosclerotic plaques in patients. Atherosclerosis 2016; 251: 381-388
  • 92 El-Dakdouki MH, El-Boubbou K, Kamat M. , et al. CD44 targeting magnetic glyconanoparticles for atherosclerotic plaque imaging. Pharm Res 2014; 31 (06) 1426-1437
  • 93 Hägg D, Sjöberg S, Hultén LM. , et al. Augmented levels of CD44 in macrophages from atherosclerotic subjects: a possible IL-6-CD44 feedback loop?. Atherosclerosis 2007; 190 (02) 291-297
  • 94 Kamat M, El-Boubbou K, Zhu DC. , et al. Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjug Chem 2010; 21 (11) 2128-2135
  • 95 Liu L, He H, Zhang M, Zhang S, Zhang W, Liu J. Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. Biomaterials 2014; 35 (27) 8002-8014
  • 96 Beldman TJ, Senders ML, Alaarg A. , et al. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano 2017; 11 (06) 5785-5799
  • 97 Amirbekian V, Lipinski MJ, Briley-Saebo KC. , et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A 2007; 104 (03) 961-966
  • 98 Tarin C, Carril M, Martin-Ventura JL. , et al. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Sci Rep 2015; 5: 17135
  • 99 Senders ML, Hernot S, Carlucci G. , et al. Nanobody-facilitated multiparametric pet/mri phenotyping of atherosclerosis. JACC Cardiovasc Imaging 2019; 12 (10) 2015-2026
  • 100 Rinne P, Hellberg S, Kiugel M. , et al. Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol Imaging Biol 2016; 18 (01) 99-108
  • 101 Tarkin JM, Joshi FR, Evans NR. , et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J Am Coll Cardiol 2017; 69 (14) 1774-1791
  • 102 Largeau B, Dupont AC, Guilloteau D, Santiago-Ribeiro MJ, Arlicot N. TSPO PET imaging: from microglial activation to peripheral sterile inflammatory diseases?. Contrast Media Mol Imaging 2017; 2017: 6592139
  • 103 Narayan N, Mandhair H, Smyth E. , et al. The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory 'M1' human macrophages. PLoS One 2017; 12 (10) e0185767
  • 104 Gaemperli O, Shalhoub J, Owen DR. , et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J 2012; 33 (15) 1902-1910
  • 105 Hellberg S, Silvola JMU, Kiugel M. , et al. 18-kDa translocator protein ligand 18F-FEMPA: biodistribution and uptake into atherosclerotic plaques in mice. J Nucl Cardiol 2017; 24 (03) 862-871
  • 106 Fan Z, Calsolaro V, Atkinson RA. , et al. Flutriciclamide (18F-GE180) PET: first-in-human PET study of novel third-generation in vivo marker of human translocator protein. J Nucl Med 2016; 57 (11) 1753-1759
  • 107 Wolak T. Osteopontin - a multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis 2014; 236 (02) 327-337
  • 108 Qiao R, Qiao H, Zhang Y. , et al. Molecular imaging of vulnerable atherosclerotic plaques in vivo with osteopontin-specific upconversion nanoprobes. ACS Nano 2017; 11 (02) 1816-1825
  • 109 Kolodgie FD, Petrov A, Virmani R. , et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 2003; 108 (25) 3134-3139
  • 110 Cheng D, Li X, Zhang C. , et al. Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages. ACS Appl Mater Interfaces 2015; 7 (04) 2847-2855
  • 111 Mousa SA. Adhesion molecules: potential therapeutic and diagnostic implications. Methods Mol Biol 2010; 663: 261-276
  • 112 Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A 1984; 81 (12) 3883-3887
  • 113 Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 1984; 4 (04) 357-364
  • 114 Heinecke JW, Rosen H, Chait A. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest 1984; 74 (05) 1890-1894
  • 115 Navab M, Berliner JA, Watson AD. , et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 1996; 16 (07) 831-842
  • 116 Rix A, Fokong S, Heringer S. , et al. Molecular ultrasound imaging of αvβ3-integrin expression in carotid arteries of pigs after vessel injury. Invest Radiol 2016; 51 (12) 767-775
  • 117 Yoo JS, Lee J, Jung JH. , et al. SPECT/CT imaging of high-risk atherosclerotic plaques using integrin-binding RGD dimer peptides. Sci Rep 2015; 5: 11752
  • 118 Jiang L, Tu Y, Kimura RH. , et al. 64Cu-labeled divalent cystine knot peptide for imaging carotid atherosclerotic plaques. J Nucl Med 2015; 56 (06) 939-944
  • 119 Paulis LE, Jacobs I, van den Akker NM. , et al. Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent. J Nanobiotechnology 2012; 10: 25
  • 120 Woodard PK, Liu Y, Pressly ED. , et al. Design and modular construction of a polymeric nanoparticle for targeted atherosclerosis positron emission tomography imaging: a story of 25% (64)Cu-CANF-Comb. Pharm Res 2016; 33 (10) 2400-2410
  • 121 Nahrendorf M, Keliher E, Panizzi P. , et al. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging 2009; 2 (10) 1213-1222
  • 122 Kheirolomoom A, Kim CW, Seo JW. , et al. Multifunctional nanoparticles facilitate molecular targeting and miRNA delivery to inhibit atherosclerosis in ApoE(-/-) mice. ACS Nano 2015; 9 (09) 8885-8897
  • 123 Michalska M, Machtoub L, Manthey HD. , et al. Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles. Arterioscler Thromb Vasc Biol 2012; 32 (10) 2350-2357
  • 124 Liu C, Zhang X, Song Y. , et al. SPECT and fluorescence imaging of vulnerable atherosclerotic plaque with a vascular cell adhesion molecule 1 single-chain antibody fragment. Atherosclerosis 2016; 254: 263-270
  • 125 Broisat A, Hernot S, Toczek J. , et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res 2012; 110 (07) 927-937
  • 126 Bala G, Blykers A, Xavier C. , et al. Targeting of vascular cell adhesion molecule-1 by 18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur Heart J Cardiovasc Imaging 2016; 17 (09) 1001-1008
  • 127 Ferrante EA, Pickard JE, Rychak J, Klibanov A, Ley K. Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control Release 2009; 140 (02) 100-107
  • 128 Chan JM, Monaco C, Wylezinska-Arridge M, Tremoleda JL, Gibbs RG. Imaging of the vulnerable carotid plaque: biological targeting of inflammation in atherosclerosis using iron oxide particles and MRI. Eur J Vasc Endovasc Surg 2014; 47 (05) 462-469
  • 129 Linden MD, Jackson DE. Platelets: pleiotropic roles in atherogenesis and atherothrombosis. Int J Biochem Cell Biol 2010; 42 (11) 1762-1766
  • 130 Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol 2015; 6: 98
  • 131 van Lammeren GW, Pasterkamp G, de Vries JP. , et al. Platelets enter atherosclerotic plaque via intraplaque microvascular leakage and intraplaque hemorrhage: a histopathological study in carotid plaques. Atherosclerosis 2012; 222 (02) 355-359
  • 132 Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014; 12 (11) 1764-1775
  • 133 Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood 2014; 123 (18) 2759-2767
  • 134 Badrnya S, Schrottmaier WC, Kral JB. , et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol 2014; 34 (03) 571-580
  • 135 Siegel-Axel D, Daub K, Seizer P, Lindemann S, Gawaz M. Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res 2008; 78 (01) 8-17
  • 136 Jacobin-Valat MJ, Laroche-Traineau J, Larivière M. , et al. Nanoparticles functionalised with an anti-platelet human antibody for in vivo detection of atherosclerotic plaque by magnetic resonance imaging. Nanomedicine (Lond) 2015; 11 (04) 927-937
  • 137 Sirol M, Fuster V, Badimon JJ. , et al. Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent. Circulation 2005; 112 (11) 1594-1600
  • 138 Spuentrup E, Buecker A, Katoh M. , et al. Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 2005; 111 (11) 1377-1382
  • 139 Spuentrup E, Fausten B, Kinzel S. , et al. Molecular magnetic resonance imaging of atrial clots in a swine model. Circulation 2005; 112 (03) 396-399
  • 140 Stracke CP, Katoh M, Wiethoff AJ, Parsons EC, Spangenberg P, Spüntrup E. Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent. Stroke 2007; 38 (05) 1476-1481
  • 141 Makowski MR, Forbes SC, Blume U. , et al. In vivo assessment of intraplaque and endothelial fibrin in ApoE(-/-) mice by molecular MRI. Atherosclerosis 2012; 222 (01) 43-49
  • 142 Clofent-Sanchez G, Jacobin-Valat MJ, Laroche-Traineau J. The growing interest of fibrin imaging in atherosclerosis. Atherosclerosis 2012; 222 (01) 22-25
  • 143 Spuentrup E, Botnar RM, Wiethoff AJ. , et al. MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol 2008; 18 (09) 1995-2005
  • 144 Ay I, Blasi F, Rietz TA. , et al. In vivo molecular imaging of thrombosis and thrombolysis using a fibrin-binding positron emission tomographic probe. Circ Cardiovasc Imaging 2014; 7 (04) 697-705
  • 145 Blasi F, Oliveira BL, Rietz TA. , et al. Multisite thrombus imaging and fibrin content estimation with a single whole-body PET scan in rats. Arterioscler Thromb Vasc Biol 2015; 35 (10) 2114-2121
  • 146 Laitinen I, Saraste A, Weidl E. , et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging 2009; 2 (04) 331-338
  • 147 Beer AJ, Pelisek J, Heider P. , et al. PET/CT imaging of integrin αvβ3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging 2014; 7 (02) 178-187
  • 148 Suzuki M, Bachelet-Violette L, Rouzet F. , et al. Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine (Lond) 2015; 10 (01) 73-87
  • 149 Li X, Bauer W, Israel I. , et al. Targeting P-selectin by gallium-68-labeled fucoidan positron emission tomography for noninvasive characterization of vulnerable plaques: correlation with in vivo 17.6T MRI. Arterioscler Thromb Vasc Biol 2014; 34 (08) 1661-1667
  • 150 Lievens D, Zernecke A, Seijkens T. , et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116 (20) 4317-4327
  • 151 Jacobin-Valat MJ, Deramchia K, Mornet S. , et al. MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed 2011; 24 (04) 413-424
  • 152 Jacobin MJ, Laroche-Traineau J, Little M. , et al. Human IgG monoclonal anti-alpha(IIb)beta(3)-binding fragments derived from immunized donors using phage display. J Immunol 2002; 168 (04) 2035-2045
  • 153 Hagemeyer CE, von Zur Muhlen C, von Elverfeldt D, Peter K. Single-chain antibodies as diagnostic tools and therapeutic agents. Thromb Haemost 2009; 101 (06) 1012-1019
  • 154 Vallet-Courbin A, Larivière M, Hocquellet A. , et al. A recombinant human anti-platelet scFv antibody produced in pichia pastoris for atheroma targeting. PLoS One 2017; 12 (01) e0170305
  • 155 Larivière M, Lorenzato CS, Adumeau L. , et al. Multimodal molecular imaging of atherosclerosis: nanoparticles functionalized with scFv fragments of an anti-αIIbβ3 antibody. Nanomedicine 2019; 22: 102082
  • 156 Prévot G, Kauss T, Lorenzato C. , et al. Iron oxide core oil-in-water nanoemulsion as tracer for atherosclerosis MPI and MRI imaging. Int J Pharm 2017; 532 (02) 669-676
  • 157 Wang X, Hagemeyer CE, Hohmann JD. , et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation 2012; 125 (25) 3117-3126
  • 158 Ardipradja K, Yeoh SD, Alt K. , et al. Detection of activated platelets in a mouse model of carotid artery thrombosis with 18 F-labeled single-chain antibodies. Nucl Med Biol 2014; 41 (03) 229-237
  • 159 Meier S, Pütz G, Massing U. , et al. Immuno-magnetoliposomes targeting activated platelets as a potentially human-compatible MRI contrast agent for targeting atherothrombosis. Biomaterials 2015; 53: 137-148
  • 160 Wang X, Gkanatsas Y, Palasubramaniam J. , et al. Thrombus-targeted theranostic microbubbles: a new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombosis. Theranostics 2016; 6 (05) 726-738
  • 161 Wang X, Palasubramaniam J, Gkanatsas Y. , et al. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res 2014; 114 (07) 1083-1093
  • 162 Schwarz M, Röttgen P, Takada Y. , et al. Single-chain antibodies for the conformation-specific blockade of activated platelet integrin alphaIIbbeta3 designed by subtractive selection from naive human phage libraries. FASEB J 2004; 18 (14) 1704-1706
  • 163 Lim B, Yao Y, Huang AL. , et al. A unique recombinant fluoroprobe targeting activated platelets allows in vivo detection of arterial thrombosis and pulmonary embolism using a novel three-dimensional fluorescence emission computed tomography (FLECT) technology. Theranostics 2017; 7 (05) 1047-1061
  • 164 Metzger K, Vogel S, Chatterjee M. , et al. High-frequency ultrasound-guided disruption of glycoprotein VI-targeted microbubbles targets atheroprogressison in mice. Biomaterials 2015; 36: 80-89
  • 165 Shim CY, Liu YN, Atkinson T. , et al. Molecular imaging of platelet-endothelial interactions and endothelial von Willebrand factor in early and mid-stage atherosclerosis. Circ Cardiovasc Imaging 2015; 8 (07) e002765
  • 166 Sirokmány G, Geiszt M. The relationship of NADPH oxidases and heme peroxidases: fallin' in and out. Front Immunol 2019; 10: 394
  • 167 Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25 (01) 29-38
  • 168 Navab M, Ananthramaiah GM, Reddy ST. , et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 2004; 45 (06) 993-1007
  • 169 Cushing SD, Berliner JA, Valente AJ. , et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A 1990; 87 (13) 5134-5138
  • 170 Vora DK, Fang ZT, Liva SM. , et al. Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circ Res 1997; 80 (06) 810-818
  • 171 Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 2013; 38 (06) 1092-1104
  • 172 Schwartz GG, Olsson AG, Ezekowitz MD. , et al; Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study Investigators. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 2001; 285 (13) 1711-1718
  • 173 Briley-Saebo KC, Shaw PX, Mulder WJ. , et al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 2008; 117 (25) 3206-3215
  • 174 Briley-Saebo KC, Cho YS, Shaw PX. , et al. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol 2011; 57 (03) 337-347
  • 175 Briley-Saebo KC, Nguyen TH, Saeboe AM. , et al. In vivo detection of oxidation-specific epitopes in atherosclerotic lesions using biocompatible manganese molecular magnetic imaging probes. J Am Coll Cardiol 2012; 59 (06) 616-626
  • 176 Nguyen TH, Bryant H, Shapsa A. , et al. Manganese G8 dendrimers targeted to oxidation-specific epitopes: in vivo MR imaging of atherosclerosis. J Magn Reson Imaging 2015; 41 (03) 797-805
  • 177 Senders ML, Que X, Cho YS. , et al. PET/MR imaging of malondialdehyde-acetaldehyde epitopes with a human antibody detects clinically relevant atherothrombosis. J Am Coll Cardiol 2018; 71 (03) 321-335
  • 178 Kobayashi K, Matsuura E, Liu Q. , et al. A specific ligand for beta(2)-glycoprotein I mediates autoantibody-dependent uptake of oxidized low density lipoprotein by macrophages. J Lipid Res 2001; 42 (05) 697-709
  • 179 Greco TP, Conti-Kelly AM, Anthony JR. , et al. Oxidized-LDL/beta(2)-glycoprotein I complexes are associated with disease severity and increased risk for adverse outcomes in patients with acute coronary syndromes. Am J Clin Pathol 2010; 133 (05) 737-743
  • 180 Sasaki T, Kobayashi K, Kita S. , et al. In vivo distribution of single chain variable fragment (scFv) against atherothrombotic oxidized LDL/β2-glycoprotein I complexes into atherosclerotic plaques of WHHL rabbits: implication for clinical PET imaging. Autoimmun Rev 2017; 16 (02) 159-167
  • 181 Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 2013; 93 (02) 185-198
  • 182 Shao B, Tang C, Sinha A. , et al. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ Res 2014; 114 (11) 1733-1742
  • 183 Rashid I, Maghzal GJ, Chen YC. , et al. Myeloperoxidase is a potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque. Eur Heart J 2018; 39 (35) 3301-3310
  • 184 Gough PJ, Gomez IG, Wille PT, Raines EW. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 2006; 116 (01) 59-69
  • 185 Hyafil F, Vucic E, Cornily JC. , et al. Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases. Eur Heart J 2011; 32 (12) 1561-1571
  • 186 Razavian M, Tavakoli S, Zhang J. , et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med 2011; 52 (11) 1795-1802
  • 187 Hemadou A, Laroche-Traineau J, Antoine S. , et al. An innovative flow cytometry method to screen human scFv-phages selected by in vivo phage-display in an animal model of atherosclerosis. Sci Rep 2018; 8 (01) 15016
  • 188 Hemadou A, Giudicelli V, Smith ML. , et al. Pacific biosciences sequencing and IMGT/HighV-QUEST analysis of full-length single chain fragment variable from an in vivo selected phage-display combinatorial library. Front Immunol 2017; 8: 1796
  • 189 Jacobin MJ, Robert R, Pouns O. , et al. Improving selection of alphaIIbbeta3-binding phage antibodies with increased reactivity derived from immunized donors. Clin Immunol 2003; 108 (03) 199-210
  • 190 Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J 2011; 162 (04) 597-605