CC BY-NC-ND 4.0 · Ann Natl Acad Med Sci 2019; 55(04): 182-188
DOI: 10.1055/s-0039-1700942
Review Article

Treating Hereditary Ataxias—Where Can We Help?

Ayush Agarwal
1   Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
,
Divyani Garg
2   Department of Neurology, Lady Hardinge Medical College, New Delhi, India
,
Mohammed Faruq
3   Genomics and Molecular Medicine, CSIR-IGIB, New Delhi, India
,
Roopa Rajan
1   Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
,
Vinay Goyal
1   Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
,
Achal Kumar Srivastava
1   Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
› Author Affiliations
Funding None.

Abstract

Hereditary ataxias comprise a group of neurological disorders which affect different levels of the neurological axis including the cerebellum, peripheral nerves, cognition, and the extrapyramidal system. These are categorized by the mode of inheritance as autosomal recessive, autosomal dominant, X-linked, and mitochondrial cerebellar ataxia. Definitive curative therapy is not available for these disorders. However, a wide array of emerging treatment options, especially in terms of symptomatic therapy, rescues this group from therapeutic nihilism. Several drugs have been assessed including riluzole, valproate, lithium, etc., as well as rehabilitative, and neuromodulatory strategies. In addition, symptomatic therapies for ancillary symptoms, such as seizures, movement disorders, spasticity, dystonia, etc., should also be targeted. Lastly, molecular therapeutic possibilities are also being explored in animal studies. In this review, we elucidate on the current treatment options available for hereditary ataxias.



Publication History

Article published online:
22 March 2020

© .

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Teive HAG, Ashizawa T. Primary and secondary ataxias. Curr Opin Neurol 2015; 28 (04) 413-422
  • 2 Sarva H, Shanker VL. Treatment options in degenerative cerebellar ataxia: a systematic review. Mov Disord Clin Pract (Hoboken) 2014; 1 (04) 291-298
  • 3 Fogel BL, Perlman S. An approach to the patient with late-onset cerebellar ataxia. Nat Clin Pract Neurol 2006; 2 (11) 629-635
  • 4 Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med 2012; 366 (07) 636-646
  • 5 Beaudin M, Matilla-Dueñas A, Soong BW. et al. The classification of autosomal recessive cerebellar ataxias: a consensus statement from the society for research on cerebellum and ataxias task force. Cerebellum 2019; 18 (06) 1098-1125
  • 6 Campuzano V, Montermini L, Moltò MD. et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271 (5254): 1423-1427
  • 7 Abrahão A, Pedroso JL, Braga-Neto P, Bor-Seng-Shu E, de Carvalho Aguiar P, Barsottini OGP. Milestones in Friedreich ataxia: more than a century and still learning. Neurogenetics 2015; 16 (03) 151-160
  • 8 Hentati F, El-euch G, Bouhlal Y, Amouri R. Ataxia with vitamin E deficiency and abetalipoproteinemia. In: Subramony SH, Dürr A. eds. Handbook of Clinical Neurology. Vol. 103. Ataxic Disorders. Elsevier; 2012: 295-305
  • 9 Gabsi S, Gouider-Khouja N, Belal S. et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 2001; 8 (05) 477-481
  • 10 Peretti N, Sassolas A, Roy CC. et al; Department of Nutrition-Hepatogastroenterology, Hôpital Femme Mère Enfant, Bron, Université Lyon 1; , Department of Pediatrics, CHU Sainte-Justine Research Center, Université de Montréal. Guidelines for the diagnosis and management of chylomicron retention disease based on a review of the literature and the experience of two centers. Orphanet J Rare Dis 2010; 5: 24
  • 11 Mukherji M, Chien W, Kershaw NJ. et al. Structure-function analysis of phytanoyl-CoA 2-hydroxylase mutations causing Refsum’s disease. Hum Mol Genet 2001; 10 (18) 1971-1982
  • 12 Jansen GA, Waterham HR, Wanders RJA. Molecular basis of Refsum disease: sequence variations in phytanoyl-CoA hydroxylase (PHYH) and the PTS2 receptor (PEX7).. Hum Mutat 2004; 23 (03) 209-218
  • 13 Patterson MC, Clayton P, Gissen P. et al. Recommendations for the detection and diagnosis of Niemann-Pick disease type C: An update. Neurol Clin Pract 2017; 7 (06) 499-511
  • 14 Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol 2007; 6 (09) 765-772
  • 15 Verrips A, Wevers RA, Van Engelen BG. et al. Effect of simvastatin in addition to chenodeoxycholic acid in patients with cerebrotendinous xanthomatosis. Metabolism 1999; 48 (02) 233-238
  • 16 Quinzii CM, Hirano M. Primary and secondary CoQ(10) deficiencies in humans. Biofactors 2011; 37 (05) 361-365
  • 17 Pineda M, Montero R, Aracil A. et al. Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. Mov Disord 2010; 25 (09) 1262-1268
  • 18 Pascual JM, Wang D, Lecumberri B. et al. GLUT1 deficiency and other glucose transporter diseases. Eur J Endocrinol 2004; 150 (05) 627-633
  • 19 Weinstein R. Phytanic acid storage disease (Refsum’s disease): clinical characteristics, pathophysiology and the role of therapeutic apheresis in its management. J Clin Apher 1999; 14 (04) 181-184
  • 20 Leen WG, Klepper J, Verbeek MM. et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain 2010; 133 (Pt 3): 655-670
  • 21 Fecarotta S, Romano A, Della Casa R. et al. Long term follow-up to evaluate the efficacy of miglustat treatment in Italian patients with Niemann-Pick disease type C. Orphanet J Rare Dis 2015; 10: 22
  • 22 Ristori G, Romano S, Visconti A. et al. Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 2010; 74 (10) 839-845
  • 23 Romano S, Coarelli G, Marcotulli C. et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2015; 14 (10) 985-991
  • 24 Saute JAM, de Castilhos RM, Monte TL. et al. A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease. Mov Disord 2014; 29 (04) 568-573
  • 25 Velázquez-Pérez L, Rodríguez-Chanfrau J, García-Rodríguez JC. et al. Oral zinc sulphate supplementation for six months in SCA2 patients: a randomized, double-blind, placebo-controlled trial. Neurochem Res 2011; 36 (10) 1793-1800
  • 26 Zesiewicz TA, Greenstein PE, Sullivan KL. et al. A randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology 2012; 78 (08) 545-550
  • 27 Assadi M, Campellone JV, Janson CG, Veloski JJ, Schwartzman RJ, Leone P. Treatment of spinocerebellar ataxia with buspirone. J Neurol Sci 2007; 260 (1-2) 143-146
  • 28 Teixeira-Castro A, Jalles A, Esteves S. et al. Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain 2015; 138 (Pt 11): 3221-3237
  • 29 Arpa J, Sanz-Gallego I, Medina-Báez J. et al. Subcutaneous insulin-like growth factor-1 treatment in spinocerebellar ataxias: an open label clinical trial. Mov Disord 2011; 26 (02) 358-359
  • 30 Strupp M, Kalla R, Claassen J. et al. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 2011; 77 (03) 269-275
  • 31 Zesiewicz TA, Wilmot G, Kuo SH. et al. Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018; 90 (10) 464-471
  • 32 D’Abreu A, França Jr. MC, Paulson HL, Lopes-Cendes I. Caring for Machado-Joseph disease: current understanding and how to help patients. Parkinsonism Relat Disord 2010; 16 (01) 2-7
  • 33 Pedroso JL, Braga-Neto P, Felício AC. et al. Sleep disorders in cerebellar ataxias. Arq Neuropsiquiatr 2011; 69 (2A): 253-257
  • 34 Kanai K, Kuwabara S, Arai K, Sung J-Y, Ogawara K, Hattori T. Muscle cramp in Machado-Joseph disease: altered motor axonal excitability properties and mexiletine treatment. Brain 2003; 126 (Pt 4) 965-973
  • 35 Schulte T, Mattern R, Berger K. et al. Double-blind crossover trial of trimethoprim-sulfamethoxazole in spinocerebellar ataxia type 3/Machado-Joseph disease. Arch Neurol 2001; 58 (09) 1451-1457
  • 36 Zanni G, Bertini ES. X-linked disorders with cerebellar dysgenesis. Orphanet J Rare Dis 2011; 6: 24
  • 37 Muzar Z, Lozano R. Current research, diagnosis, and treatment of fragile X-associated tremor/ataxia syndrome. Intractable Rare Dis Res 2014; 3 (04) 101-109
  • 38 Yang J-C, Niu Y-Q, Simon C. et al. Memantine effects on verbal memory in fragile X-associated tremor/ataxia syndrome (FXTAS): a double-blind brain potential study. Neuropsychopharmacology 2014; 39 (12) 2760-2768
  • 39 dos Santos Ghilardi MG, Cury RG, dos Ângelos JS. et al. Long-term improvement of tremor and ataxia after bilateral DBS of VoP/zona incerta in FXTAS. Neurology 2015; 84 (18) 1904-1906
  • 40 Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012; (04) CD004426
  • 41 Libri V, Yandim C, Athanasopoulos S. et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet 2014; 384 (9942): 504-513
  • 42 Gottesfeld JM, Rusche JR, Pandolfo M. Increasing frataxin gene expression with histone deacetylase inhibitors as a therapeutic approach for Friedreich’s ataxia. J Neurochem 2013; 126 (Suppl. 01) 147-154
  • 43 Buijsen RAM, Toonen LJA, Gardiner SL. van Roon-Mom WMC. Genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias. Neurotherapeutics 2019; 16 (02) 263-286
  • 44 Fonteyn EMR, Keus SHJ, Verstappen CCP, Schöls L, de Groot IJM, van de Warrenburg BPC. The effectiveness of allied health care in patients with ataxia: a systematic review. J Neurol 2014; 261 (02) 251-258
  • 45 Milne SC, Corben LA, Georgiou-Karistianis N, Delatycki MB, Yiu EM. Rehabilitation for Individuals with genetic degenerative Ataxia: A systematic review. Neurorehabil Neural Repair 2017; 31 (07) 609-622
  • 46 Synofzik M, Ilg W. Motor training in degenerative spinocerebellar disease: ataxia-specific improvements by intensive physiotherapy and exergames. BioMed Res Int 2014; 2014: 583507
  • 47 Vogel AP, Folker J, Poole ML. Treatment for speech disorder in Friedreich ataxia and other hereditary ataxia syndromes. Cochrane Database Syst Rev 2014; (10) CD008953
  • 48 Bird TD. Hereditary ataxia overview. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews. Seattle, WA: University of Washington; 1998
  • 49 Tur-Kaspa I, Jeelani R, Doraiswamy PM. Preimplantation genetic diagnosis for inherited neurological disorders. Nat Rev Neurol 2014; 10 (07) 417-424
  • 50 Benussi A, Koch G, Cotelli M, Padovani A, Borroni B. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study. Mov Disord 2015; 30: 1701-1705
  • 51 Benussi A, Dell’Era V, Cotelli MS. et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul 2017; 10 (02) 242-250
  • 52 Benussi A, Dell’Era V, Cantoni V. et al. Cerebello-spinal tDCS in ataxia: A randomized, double-blind, sham-controlled, crossover trial. Neurology 2018; 91 (12) e1090-e1101
  • 53 Shiga Y, Tsuda T, Itoyama Y. et al. Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J Neurol Neurosurg Psychiatry 2002; 72 (01) 124-126
  • 54 Moore LR, Rajpal G, Dillingham IT. et al. Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol Ther Nucleic Acids 2017; 7: 200-210