CC BY-NC-ND 4.0 · Organic Materials 2019; 01(01): 001-018
DOI: 10.1055/s-0039-1700846
Review
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2019) The Author(s).

Starphenes and Phenes: Structures and Properties

Elias C. Rüdiger
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, FRG, Email: [email protected]   Email: [email protected]
,
Matthias Müller
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, FRG, Email: [email protected]   Email: [email protected]
,
Jan Freudenberg
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, FRG, Email: [email protected]   Email: [email protected]
b  InnovationLab, Speyerer Straße 4, 69115 Heidelberg, Germany
,
a  Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, FRG, Email: [email protected]   Email: [email protected]
c  Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, FRG
› Author Affiliations
Funding Information: We thank the DFG (SFB 1249) for generous financial support. Matthias Müller thanks the Fonds der Chemischen Industrie for a PhD scholarship.
Further Information

Publication History

Received: 10 April 2019

Accepted after revision: 19 June 2019

Publication Date:
25 November 2019 (online)


Abstract

Acenes have been known for a long time but their larger congeners, starphenes and phenes, have only been recently accessible as processable and characterizable derivatives. In this personalized review, we delineate the synthetic approach developed by our group over the last four years. Nickel-mediated Yamamoto coupling of ortho-dibromoacenes generates cyclotrimers. If performed in a shotgun approach, i.e. with substituted 2,3-dibromotetracene or -pentacene in the presence of ortho-dibromobenzene or ortho-dibromoveratrole, trimeric phenes and tetramers would result. Cyclotrimers formed by a pentacenylene and two phenylenes are formally dibenzo[a,c]hexacenes. A direct way to obtain these species is to employ Stille coupling of a dimethylstannafluorene with 2,3-dibromoacenes. If tetrabromoanthracenes or tetrabromopentacenes are fed into this process, tetrabenzopentacene and tetrabenzoheptacenes are easily accessible. Optical and quantum-chemical characterizations provide insight into the electronic situation and aromaticity of these species.

 
  • References

  • 1 Wegner G. Angew. Chem. Int. Ed. Engl. 1981; 20: 361-381
  • 2 Goodings EP, Mitchard DA, Owen G. J. Chem. Soc. Perkin. Trans. 1 1972; 1310
  • 3 Tsumura A, Koezuka H, Ando T. Appl. Phys. Lett. 1986; 49: 1210-1212
  • 4 Assadi A, Svensson C, Willander M, Inganäs O. Appl. Phys. Lett. 1988; 53: 195-197
  • 5 Setayesh S, Grimsdale AC, Weil T. , et al. J. Am. Chem. Soc. 2001; 123: 946-953
  • 6 Ahrens L, Schlisske S, Strunk K-P. , et al. Chem. Mater. 2018; 30: 4157-4167
  • 7 Shu C-F, Dodda R, Wu F-I, Liu MS, Jen AK-Y. Macromolecules 2003; 36: 6698-6703
  • 8 Li Z, Xu X, Zhang W. , et al. J. Am. Chem. Soc. 2016; 138: 10935-10944
  • 9 Horowitz G, Kouki F, Spearman P. , et al. Adv. Mater. 1996; 8: 242-245
  • 10 Zheng N, Mahmood K, Zhong W. , et al. Nano Energy 2019; 58: 724-731
  • 11a Clar E. Aromatische Kohlenwasserstoffe. 2nd ed. Springer: Berlin, Heidelberg; 1952
  • 11b Clar E, John F. Ber. dtsch. Chem. Ges. A/B 1929; 62: 3021-3029
  • 11c Clar E, John F. Ber. dtsch. Chem. Ges. A/B 1930; 63: 2967-2977
  • 12 Dimitrakopoulos CD, Malenfant PRL. Adv. Mater. 2002; 14: 99-117
  • 13 Sirringhaus H. Adv. Mater. 2005; 17: 2411-2425
  • 14 Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W, Weber W. J. Appl. Phys. 2002; 92: 5259-5263
  • 15 Anthony JE, Brooks JS, Eaton DL, Parkin SR. J. Am. Chem. Soc. 2001; 123: 9482-9483
  • 16 Anthony JE. Chem. Rev. 2006; 106: 5028-5048
  • 17 Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452-483
  • 18 Xiao C, Kan X, Liu C. , et al. J. Mater. Chem. C Mater. Opt. Electron. Devices 2017; 5: 2702-2707
  • 19 Murtaza G, Ahmad I, Chen H, Wu J. Synth. Met. 2014; 194: 146-152
  • 20 Yu X, Zhou N, Han S. , et al. J. Mater. Chem. C Mater. Opt. Electron. Devices 2013; 1: 6532
  • 21 Lee JH, Seo Y, Park YD. , et al. Sci. Rep. 2019; 9: 21
  • 22 Walker BJ, Musser AJ, Beljonne D, Friend RH. Nat. Chem. 2013; 5: 1019-1024
  • 23 Herz J, Buckup T, Paulus F, Engelhart JU, Bunz UHF, Motzkus M. J. Phys. Chem. A 2015; 119: 6602-6610
  • 24 Purushothaman B, Bruzek M, Parkin SR, Miller A-F, Anthony JE. Angew. Chem. Int. Ed. 2011; 50: 7013-7017
  • 25 Payne MM, Parkin SR, Anthony JE. J. Am. Chem. Soc. 2005; 127: 8028-8029
  • 26 Bunz UHF. Pure Appl. Chem. 2010; 82: 953-968
  • 27 Bunz UHF, Engelhart JU, Lindner BD, Schaffroth M. Angew. Chem. Int. Ed. 2013; 52: 3810-3821
  • 28 Engelhart JU, Tverskoy O, Bunz UHF. J Am. Chem. Soc. 2014; 136: 15166-15169
  • 29 Bunz UHF. Acc. Chem. Res. 2015; 48: 1676-1686
  • 30 Fogel Y, Kastler M, Wang Z, Andrienko D, Bodwell GJ, Müllen K. J. Am. Chem. Soc. 2007; 129: 11743-11749
  • 31 Kohl B, Rominger F, Mastalerz MA. Angew. Chem. Int. Ed. 2015; 54: 6051-6056
  • 32 Li J, Zhang Q. ACS Appl. Mater. Interfaces 2015; 7: 28049-28062
  • 33 Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren AM. Angew. Chem. Int. Ed. 2018; 57: 10500-10505
  • 34 Krüger J, García F, Eisenhut F. , et al. Angew. Chem. Int. Ed. 2017; 56: 11945-11948
  • 35 Einholz R, Fang T, Berger R. , et al. J. Am. Chem. Soc. 2017; 139: 4435-4442
  • 36 Mondal R, Shah BK, Neckers DC. J. Am. Chem. Soc. 2006; 128: 9612-9613
  • 37 Clar E. Polycyclic Hydrocarbons: Volume 1. Springer; Berlin, Heidelberg: 1964
  • 38 Biermann D, Schmidt W. J. Am. Chem. Soc. 1980; 102: 3173-3181
  • 39 Tang M, Yu Q, Wang Z. , et al. Org. Lett. 2018; 20: 7620-7623
  • 40 Clar E, Mullen A. Tetrahedron 1968; 24: 6719-6724
  • 41 Gutman I, Petrović V. Monatsh. Chem. 1995; 126: 1179-1185
  • 42 Wright PT. Synthesis 1997; 1997: 1007-1009
  • 43 Liu Z, Zhang X, Larock RC. J. Am. Chem. Soc. 2005; 127: 15716-15717
  • 44 Eistert B, Fink H, Werner H-K. Justus. Liebigs. Ann. Chem. 1962; 657: 131-141
  • 45 Ha SD, Kaafarani BR, Barlow S, Marder SR, Kahn A. J. Phys. Chem. C 2007; 111: 10493-10497
  • 46 Selzer F, Falkenberg C, Hamburger M. , et al. J. Appl. Phys. 2014; 115: 54515
  • 47 Cortizo-Lacalle D, Pertegás A, Martínez-Sarti L, Melle-Franco M, Bolink HJ, Mateo-Alonso A. J. Mater. Chem. C Mater. Opt. Electron. Devices 2015; 3: 9170-9174
  • 48 Lynett PT, Maly KE. Org. Lett. 2009; 11: 3726-3729
  • 49 Schuler B, Collazos S, Gross L. , et al. Angew. Chem. Int. Ed. 2014; 53: 9004-9006
  • 50 Alonso JM, Díaz-Álvarez AE, Criado A, Pérez D, Peña D, Guitián E. Angew. Chem. Int. Ed. 2012; 51: 173-177
  • 51 Rüdiger EC, Rominger F, Steuer L, Bunz UHF. J. Org. Chem. 2016; 81: 193-196
  • 52 Rüdiger EC, Porz M, Schaffroth M, Rominger F, Bunz UHF. Chem. Eur. J. 2014; 20: 12725-12728
  • 53 Platt AD, Day J, Subramanian S, Anthony JE, Ostroverkhova O. J. Phys. Chem. C. 2009; 113: 14006-14014
  • 54 Odom SA, Parkin SR, Anthony JE. Org. Lett. 2003; 5: 4245-4248
  • 55 Mora-Fuentes JP, Riaño A, Cortizo-Lacalle D, Saeki A, Melle-Franco M, Mateo-Alonso A. Angew. Chem. Int. Ed. 2019; 58: 552-556
  • 56 Zhou Z-h, Yamamoto T. J. Organomet. Chem. 1991; 414: 119-127
  • 57 Rüdiger EC, Koser S, Rominger F, Freudenberg J, Bunz UHF. Chem. Eur. J. 2018; 24: 9919-9927
  • 58 Yuan C, Saito S, Camacho C, Kowalczyk T, Irle S, Yamaguchi S. Chem. Eur. J. 2014; 20: 2193-2200
  • 59 Hu B-L, Zhang K, An C, Schollmeyer D, Pisula W, Baumgarten M. Angew. Chem. Int. Ed. 2018; 57: 12375-12379
  • 60 Cortizo-Lacalle D, Mora-Fuentes JP, Strutyński K, Saeki A, Melle-Franco M, Mateo-Alonso A. Angew. Chem. Int. Ed. 2018; 57: 703-708
  • 61 Zhang G, Rominger F, Zschieschang U, Klauk H, Mastalerz M. Chem. Eur. J. 2016; 22: 14840-14845
  • 62 Yang W, Monteiro JHSK, de Bettencourt-Dias A, Catalano VJ, Chalifoux WA. Chem. Eur. J. 2019; 25: 1441-1445
  • 63 Rüdiger EC, Müller M, Koser S, Rominger F, Freudenberg J, Bunz UHF. Chem. Eur. J. 2018; 24: 1036-1040
  • 64 Müller M, Rüdiger EC, Koser S. , et al. Chem. Eur. J. 2018; 24: 8087-8091
  • 65 Gaussian 09, Revision D, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016
  • 66 Crystallographic data from the Cambridge Structural Database (pentacene: CCDC 114447, TIPS-Pen CCDC 172476)
  • 67 Crystallographic data from the Cambridge Structural Database (P3: CCDC 1004995, T3 CCDC 100499)
  • 68 Crystallographic data from the Cambridge Structural Database (PB2: CCDC 1560190, PV2 1560191)
  • 69 Crystallographic data from the Cambridge Structural Database (CCDC 1826259)
  • 70 Crystallographic data from the Cambridge Structural Database (CCDC 1908230)