Journal of Pediatric Neurology 2020; 18(04): 201-205
DOI: 10.1055/s-0039-1700533
Case Report
Georg Thieme Verlag KG Stuttgart · New York

Isolated Superior Cerebellar Vermis Injury: A Consequence of Hypoxic Ischemic Injury

1   Hull University Teaching Hospital, Hull, United Kingdom
2   Department of Paediatric Radiology, Sheffield Children's Hospital, Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield, United Kingdom
,
Santosh R. Mordekar
2   Department of Paediatric Radiology, Sheffield Children's Hospital, Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield, United Kingdom
,
Daniel J.A. Connolly
2   Department of Paediatric Radiology, Sheffield Children's Hospital, Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield, United Kingdom
,
Paul D. Griffiths
3   Department of Academic Radiology, Academic Unit of Radiology, University of Sheffield, Western Bank, Sheffield, United Kingdom
› Author Affiliations
Further Information

Publication History

22 July 2019

18 September 2019

Publication Date:
25 October 2019 (online)

Abstract

Hypoxic ischemic insult in early childhood can have a varied clinical presentation depending on the timing and severity of the insult, and magnetic resonance imaging plays a key role in identifying injury patterns. Dyskinetic cerebral palsy is commonly associated with injury to the basal ganglia and thalamus. We report two cases presenting in early childhood with signs and symptoms of dyskinetic cerebral palsy attributed to focal damage to the superior cerebellar vermis secondary to a hypoxic insult in the perinatal period in term infants.

 
  • References

  • 1 Li AM, Chau V, Poskitt KJ. , et al. White matter injury in term newborns with neonatal encephalopathy. Pediatr Res 2009; 65 (01) 85-89
  • 2 Surveillance of Cerebral Palsy in Europe. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev Med Child Neurol 2000; 42 (12) 816-824
  • 3 Kuban KC, Leviton A. Cerebral palsy. N Engl J Med 1994; 330 (03) 188-195
  • 4 Ashwal S, Russman BS, Blasco PA. , et al; Quality Standards Subcommittee of the American Academy of Neurology; Practice Committee of the Child Neurology Society. Practice parameter: diagnostic assessment of the child with cerebral palsy: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2004; 62 (06) 851-863
  • 5 Krägeloh-Mann I, Horber V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: a systematic review. Dev Med Child Neurol 2007; 49 (02) 144-151
  • 6 Korzeniewski SJ, Birbeck G, DeLano MC, Potchen MJ, Paneth N. A systematic review of neuroimaging for cerebral palsy. J Child Neurol 2008; 23 (02) 216-227
  • 7 Monbaliu E, Himmelmann K, Lin JP. , et al. Clinical presentation and management of dyskinetic cerebral palsy. Lancet Neurol 2017; 16 (09) 741-749
  • 8 Martinez-Biarge M, Diez-Sebastian J, Kapellou O. , et al. Predicting motor outcome and death in term hypoxic-ischemic encephalopathy. Neurology 2011; 76 (24) 2055-2061
  • 9 Aravamuthan BR, Waugh JL. Localization of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Pediatr Neurol 2016; 54: 11-21
  • 10 Griffiths PD, Radon MR, Crossman AR, Zurakowski D, Connolly DJ. Anatomic localization of dyskinesia in children with “profound” perinatal hypoxic-ischemic injury. AJNR Am J Neuroradiol 2010; 31 (03) 436-441
  • 11 Benini R, Dagenais L, Shevell MI. ; Registre de la Paralysie Cérébrale au Québec (Quebec Cerebral Palsy Registry) Consortium. Normal imaging in patients with cerebral palsy: what does it tell us?. J Pediatr 2013; 162 (02) 369-74.e1
  • 12 Barkovich AJ, Raybaud C. Brain and Spine Injuries in Infancy and Childhood. Pediatric Neuroimaging. 5th ed. Philadelphia, PA: Lippincott, Williams and Wilkins; 2012: 240-366
  • 13 Rademakers RP, Van der Knapp MS, Verbeeten B. , et al. Central cortico-subcortical involvement: a distinct pattern of brain damage caused by perinatal and postnatal asphyxia in term infants. J Comput Assist Tomogr 1995; 19 (02) 256-263
  • 14 Sargent MA, Poskitt KJ, Roland EH, Hill A, Hendson G. Cerebellar vermian atrophy after neonatal hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol 2004; 25 (06) 1008-1015
  • 15 Connolly DJA, Widjaja E, Griffiths PD. Involvement of the anterior lobe of the cerebellar vermis in perinatal profound hypoxia. AJNR Am J Neuroradiol 2007; 28 (01) 16-19
  • 16 Welsh JP, Yuen G, Placantonakis DG. , et al. Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol 2002; 89: 331-359