CC BY-NC-ND 4.0 · Organic Materials 2019; 01(01): 019-029
DOI: 10.1055/s-0039-1698431
Review
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/) (2019) The Author(s).

Fluorinated Organic Porous Materials

Department of Chemistry, University of Houston, 112 Fleming Building, Houston TX 77204-5003, USA
,
Department of Chemistry, University of Houston, 112 Fleming Building, Houston TX 77204-5003, USA
› Author Affiliations
Acknowledgment: Over the years, the work in our labs has been supported by the University of Houston, the National Science Foundation (DMR-1507664 and DMR-1904998), the Welch Foundation (E-1768), and the donors of the American Chemical Society Petroleum Research Fund (58919-ND4). Ognjen Š. Miljanić is a Cottrell Scholar of the Research Corporation for Science Advancement. Parts of this manuscript have been written at the Ruprecht-Karls-Universität in Heidelberg and the Alexander von Humboldt Foundation is acknowledged for supporting Ognjen Š. Miljanić's stay there.
Further Information

Publication History

Received: 20 June 2019

Accepted after revision: 24 July 2019

Publication Date:
29 November 2019 (online)


Abstract

Fluorine is in many aspects unique among the elements, and its incorporation into organic molecules can dramatically change their physical and chemical properties. This minireview will survey the existing classes of fluorinated porous materials, with a particular focus on all-organic porous materials. We will highlight our work on the preparation and study of metal–organic frameworks and porous molecular crystals derived from extensively fluorinated rigid aromatic pyrazoles and tetrazoles. Where possible, comparisons between fluorinated and nonfluorinated materials will be made.

 
  • References

  • 1 CRC Handbook of Chemistry and Physics, 100th ed. Rumble J. CRC Press: Boca Raton; 2019
  • 2 Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432-2506
  • 3 Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475-4521
  • 4 Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2004; 44: 214-231
  • 5 Fluorinated Materials for Energy Conversion. Nakajima T, Groult H. Elsevier; Amsterdam: 2005
  • 6 Ragni R, Punzi A, Babudri F, Farinola GM. Eur. J. Org. Chem. 2018; 3500-3519
  • 7 Pachfule P, Banerjee R. Fluorinated Metal-Organic Frameworks (FMOFs): Concept, Construction, and Properties, Encyclopedia of Inorganic and Bioinorganic Chemistry. MacGillivray LR, Lukehart CM. John Wiley & Sons; Chichester: 2014: 85-98
  • 8 Noro S, Nakamura T. NPG Asia Mater. 2017; 9: e433
  • 9 Metal-Organic Frameworks: Applications in Separations and Catalysis. García H, Navalón S. Wiley-VCH; Weinheim: 2018
  • 10 The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications. Kaskel S. Wiley-VCH; Weinheim: 2016
  • 11 Metal-Organic Frameworks: Applications from Catalysis to Gas Storage. Farrusseng D. Wiley-VCH; Weinheim: 2011
  • 12 Metal-Organic Frameworks: Design and Application. MacGillivray LR. Wiley; Hoboken: 2010
  • 13 Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc. 2019; 141: 1807-1822
  • 14 Huang N, Wang P, Jiang D. Nat. Rev. Mater. 2016; 1: 16068
  • 15 Feng X, Ding X, Jiang D. Chem. Soc. Rev. 2012; 41: 6010-6022
  • 16 Zhao W, Xia L, Liu X. Cryst. Eng. Comm. 2018; 20: 1613-1634
  • 17 Hisaki I, Xin C, Takahashi K, Nakamura T. Angew. Chem. Int. Ed. 2019; 58: 11160-11170
  • 18 Hashim MI, Hsu CW, Le HT. M, Miljanić O. Š. Synlett 2016; 27: 1907-1918
  • 19 Cooper AI. ACS Cent. Sci. 2017; 3: 544-553
  • 20 Evans JD, Sumby CJ, Doonan CJ. Chem. Lett. 2015; 44: 582-588
  • 21 Zhang G, Mastalerz M. Chem. Soc. Rev. 2014; 43: 1934-1947
  • 22 Holst JR, Trewin A, Cooper AI. Nat. Chem. 2010; 2: 915-920
  • 23 Yang C, Wang X, Omary MA. J. Am. Chem. Soc. 2007; 129: 15454-15455
  • 24 Pachfule P, Dey C, Panda T, Vanka K, Banerjee R. Cryst. Growth Des. 2010; 10: 1351-1363
  • 25 Yang C, Kaipa U, Mather QZ, Wang X, Nesterov V, Venero AF, Omary MA. J. Am. Chem. Soc. 2011; 133: 18094-18097
  • 26 Nijem N, Canepa P, Kaipa U, Tan K, Roodenko K, Tekarli SM, Halbert J, Oswald IW. H, Arvapally RK, Yang C, Thonhauser T, Omary MA, Chabal YJ. J. Am. Chem. Soc. 2013; 135: 12615-12626
  • 27 Chen TH, Popov I, Zenasni O, Daugulis O, Miljanić O. Š. Chem. Commun. 2013; 49: 6846-6848
  • 28 Chen TH, Popov I, Kaveevivitchai W, Chuang YC, Chen YS, Jacobson AJ, Miljanić O. Š. Angew. Chem. Int. Ed. 2015; 54: 13902-13906
  • 29 Motkuri RK, Annapureddy HV. R, Vijaykumar M, Schaef HT, Martin PF, McGrail BP, Dang LX, Krishna R, Thallapally PK. Nat. Commun. 2014; 5: 4368
  • 30 Gao C, Li J, Yin S, Lin G, Ma T, Meng Y, Sun J, Wang C. Angew. Chem. Int. Ed. 2019; 58: 9770-9775
  • 31 Braunecker WA, Hurst KE, Ray KG, Owczarczyk ZR, Martines MB, Leick N, Keuhlen A, Sellinger A, Johnson JC. Cryst. Growth Des. 2018; 18: 4160-4166
  • 32 Chen X, Addicoat M, Irle S, Nagai A, Jiang D. J. Am. Chem. Soc. 2013; 135: 546-549
  • 33 Alahakoon SB, McCandless GT, Karunathilake AA. K, Thompson CM, Smaldone RA. Chem. Eur. J. 2017; 23: 4255-4259
  • 34 Alahakoon SB, Occhialini G, McCandless GT, Karunathilake AA. K, Nielsen SO, Smaldone RA. Cryst. Eng. Comm. 2017; 19: 4882-4885
  • 35 For a recent review of CTFs, see: Liu M, Guo L, Jin S, Tan B. J. Mater. Chem. A 2019; 7: 5153-5172
  • 36 Wang Y, Chen J, Wang G, Li Y, Wen Z. Angew. Chem. Int. Ed. 2018; 57: 13120-13124
  • 37 Je SH, Kim HJ, Kim J, Choi JW, Coskun A. Adv. Funct. Mater. 2017; 27: 1703947
  • 38 Xu F, Yang S, Jiang G, Ye Q, Wei B, Wang H. ACS Appl. Mater. Interfaces 2017; 9: 37731-37738
  • 39 Wang DG, Li N, Hu Y, Wan S, Song M, Yu G, Jin Y, Wei W, Han K, Kuang GC, Zhang W. ACS Appl. Mater. Interfaces 2018; 10: 42233-42240
  • 40 Zhao Y, Yao KX, Teng B, Zhang T, Han Y. Energy Environ. Sci. 2013; 6: 3684-3692
  • 41 Dey S, Bhunia A, Breitzke H, Groszewicz PB, Buntkowsky G, Janiak C. J. Mater. Chem. A 2017; 5: 3609-3620
  • 42 Wang G, Leus K, Jena HS, Krishnaraj C, Zhao S, Depauw H, Tahir N, Liu YY, van der Voort P. J. Mater. Chem. A 2018; 6: 6370-6375
  • 43 Yang Z, Wang S, Zhang Z, Guo W, Jie K, Hashim MI, Miljanić O. Š, Jiang D.-e, Popovs I, Dai S. J. Mater. Chem. A 2019; 7: 17277-17282
  • 44 Wang S, Tian Z, Dai S, Jiang De. J. Phys. Chem. C 2017; 121: 22025-22030
  • 45 Mukherjee S, Zeng Z, Shirolkar MM, Samanta P, Chaudhari AK, Tan JC, Ghosh SK. Chem. Eur. J. 2018; 24: 11771-11778
  • 46 Liu D, Chen Q, Zhao Y, Zhang L, Qi AD, Han BH. ACS Macro Lett. 2013; 2: 522-526
  • 47 Cao Q, Yin Q, Chen Q, Dong ZB, Han BH. Chem. Eur. J. 2017; 23: 9831-9837
  • 48 Dawson R, Laybourn A, Clowes R, Khimyak YZ, Adams DJ, Cooper AI. Macromolecules 2009; 42: 8809-8816
  • 49 Comotti A, Castiglioni F, Bracco S, Perego J, Pedrini A, Negroni M, Sozzani P. Chem. Commun. 2019; 55: 8999-9002
  • 50 Li G, Yao C, Wang J, Xu Y. Sci. Rep. 2017; 7: 13972
  • 51 Yang ZZ, Zhao Y, Zhang H, Yu B, Ma Z, Ji G, Liu Z. Chem. Commun. 2014; 50: 13910-13913
  • 52 Kim S, Thirion D, Nguyen TS, Kim B, Dogan NA, Yavuz CT. Chem. Mater. 2019; 31: 5206-5213
  • 53 Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Nature 2016; 529: 190-194
  • 54 Surface area of the prepared material varied in the range between 35 and 263 m2 g−1, depending on the ratio of the two precursors used in the polymerization
  • 55 Yang RX, Wang TT, Deng WQ. Sci. Rep. 2015; 5: 10155
  • 56 Alzate-Sánchez DM, Smith BJ, Alsbaiee A, Hinestroza JP, Dichtel WR. Chem. Mater. 2016; 28: 8340-8346
  • 57 Xiao L, Ling Y, Alsbaiee A, Li C, Helbling DE, Dichtel WR. J. Am. Chem. Soc. 2017; 139: 7689-7692
  • 58 Klemes MJ, Ling Y, Ching C, Wu C, Xiao L, Helbling DE, Dichtel WR. Angew. Chem. Int. Ed. 2019; 58: 12049-12053
  • 59 Fernandes SP. S, Romero V, Espiña B, Salonen LM. Chem. Eur. J. 2019; 25: 6461-6473
  • 60 Pulido A, Chen L, Kaczorowski T, Holden D, Little MA, Chong SY, Slater BJ, McMahon DP, Bonillo B, Stackhouse CJ, Stephenson A, Kane CM, Clowes R, Hasell T, Cooper AI, Day GM. Nature 2017; 543: 657-664
  • 61 Kohl B, Rominger F, Mastalerz M. Chem. Eur. J. 2015; 21: 17308-17313
  • 62 Hashim MI, Le HT. M, Chen TH, Chen YS, Daugulis O, Hsu CW, Jacobson AJ, Kaveevivitchai W, Liang X, Makarenko T, Miljanić O. Š, Popovs I, Tran HV, Wang X, Wu CH, Wu JI. J. Am. Chem. Soc. 2018; 140: 6014-6026
  • 63 Chen TH, Kaveevivitchai W, Jacobson AJ, Miljanić O. Š. Chem. Commun. 2015; 51: 14096-14098
  • 64 Hendon CH, Wittering KE, Chen TH, Kaveevivitchai W, Popov I, Butler KT, Wilson CC, Cruickshank DL, Miljanić O. Š, Walsh A. Nano Lett. 2015; 15: 2149-2154
  • 65 Zhang Z, Hashim MI, Miljanić O. Š. Chem. Commun. 2017; 53: 10022-10025
  • 66 Zhang Z, Hashim MI, Wu CH, Wu JI, Miljanić O. Š. Chem. Commun. 2018; 54: 11578-11581
  • 67 Zhang Z, Lieu T, Wu CH, Wang X, Wu JI, Daugulis O, Miljanić O. Š. Chem. Commun. 2019; 55: 9387-9390
  • 68 Hisaki I, Ikenaka N, Tsuzuki S, Tohnai N. Mater. Chem. Front. 2018; 2: 338-346
  • 69 Nikolayenko VI, Castell DC, van Heerden DP, Barbour LJ. Angew. Chem. Int. Ed. 2018; 57: 12086-12091
  • 70 Sasaki H, Imoto H, Kitao T, Uemura T, Yumura T, Naka K. Chem. Commun. 2019; 55: 6487-6490
  • 71 Mahmood J, Kim D, Jeon IY, Lah MS, Baek JB. Synlett 2013; 24: 246-248
  • 72 Zhou DD, Xu YT, Lin RB, Mo ZW, Zhang WX, Zhang JP. Chem. Commun. 2016; 52: 4991-4994
  • 73 Sato S, Iida J, Suzuki K, Kawano M, Ozeki T, Fujita M. Science 2006; 313: 1273-1276
  • 74 Elbert SM, Regenauer NI, Schindler D, Zhang WS, Rominger F, Schröder RR, Mastalerz M. Chem. Eur. J. 2018; 24: 11438-11443
  • 75 Bojdys MJ, Briggs ME, Jones JTA, Adams DJ, Chong SY, Schmidtmann M, Cooper AI. J. Am. Chem. Soc. 2011; 133: 16566-16571
  • 76 Ong WJ, Swager TM. Nat. Chem. 2018; 10: 1023-1030