CC BY-NC-ND 4.0 · Revista Chilena de Ortopedia y Traumatología 2019; 60(02): 067-076
DOI: 10.1055/s-0039-1698417
Review Article | Artículo de Revisión
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Cirugía Robótica en Artroplastia de Rodilla

Robotic Surgery in Knee Arthroplasty
1   Departamento de Ortopedia y Traumatología, Clínica Las Condes, Las Condes, Santiago, Chile
,
1   Departamento de Ortopedia y Traumatología, Clínica Las Condes, Las Condes, Santiago, Chile
,
1   Departamento de Ortopedia y Traumatología, Clínica Las Condes, Las Condes, Santiago, Chile
,
1   Departamento de Ortopedia y Traumatología, Clínica Las Condes, Las Condes, Santiago, Chile
,
1   Departamento de Ortopedia y Traumatología, Clínica Las Condes, Las Condes, Santiago, Chile
,
1   Departamento de Ortopedia y Traumatología, Clínica Las Condes, Las Condes, Santiago, Chile
2   Departamento de Ortopedia y Traumatología, Hospital Clínico de la Universidad de Chile, Independencia, Santiago, Chile
,
1   Departamento de Ortopedia y Traumatología, Clínica Las Condes, Las Condes, Santiago, Chile
,
1   Departamento de Ortopedia y Traumatología, Clínica Las Condes, Las Condes, Santiago, Chile
3   Departamento de Ortopedia y Traumatología, Hospital del Trabajador, Providencia, Santiago, Chile
,
1   Departamento de Ortopedia y Traumatología, Clínica Las Condes, Las Condes, Santiago, Chile
3   Departamento de Ortopedia y Traumatología, Hospital del Trabajador, Providencia, Santiago, Chile
› Institutsangaben
Weitere Informationen

Publikationsverlauf

19. März 2019

23. August 2019

Publikationsdatum:
30. September 2019 (online)

Resumen

La cirugía protésica de rodilla es un procedimiento ampliamente aceptado como etapa final del tratamiento de la artrosis de rodilla, con sobrevida que supera el 90% a 10–15 años. Dentro de las principales causas de fallo, se encuentran la infección (20,4%) y el aflojamiento mecánico (20,3%). El uso de ayudas tecnológicas en cirugía está en constante desarrollo, con el objetivo de mejorar la precisión del acto quirúrgico. En ese escenario, la Cirugía Asistida por Computador (CAS) en artroplastia de rodilla, crece de forma exponencial, y apunta a mejorar el posicionamiento y selección del tamaño de los componentes protésicos, aumentar la precisión de las resecciones óseas y mejorar el balance de los tejidos blandos, logrando así una mayor sobrevida del implante. En comparación a las técnicas convencionales, la cirugía robótica ha mostrado mejores resultados funcionales, al primer año de seguimiento, en términos de rango articular, menor dolor post-operatorio y menor tiempo de estadía hospitalaria. Pero todavía es necesario establecer si, a largo plazo, esas diferencias funcionales se traducirán en mejores resultados clínicos que permitan, de forma consistente, inclinar la balanza en favor de la técnica asistida por robot por sobre las técnicas tradicionales.

Abstract

Prosthetic knee surgery is a widely accepted procedure as the final stage in the treatment of knee osteoarthritis, with survival rate over 90% at 10 - 15 years. Among the main causes of failure are infection (20.4%) and mechanical loosening (20.3%). The use of technological aids in surgery is in constant development, with the aim of improving the accuracy of the surgical act. In this scenario, Computer-Aided Surgery (CAS) in knee arthroplasty grows exponentially, and aims to improve the positioning and selection of the size of the prosthetic components, increase the accuracy of bone resections and improve the balance of soft tissues, thus achieving a greater survival of the implant. Compared to conventional techniques, robotic surgery has shown better functional results at the first year of follow-up, in terms of joint range, less post-operative pain and shorter hospital stay. It is still necessary to establish whether, in the long term, these functional differences will result in better clinical results that will allow - in a consistent manner - to tip the balance in favor of robot-assisted technique over traditional techniques.

 
  • Bibliografía

  • 1 Vince KG. The problem total knee replacement: systematic, comprehensive and efficient evaluation. Bone Joint J 2014; 96-B (11, Supple A): 105-111
  • 2 Verra WC, van den Boom LGH, Jacobs W, Clement DJ, Wymenga AAB, Nelissen RGHH. Retention versus sacrifice of the posterior cruciate ligament in total knee arthroplasty for treating osteoarthritis. Cochrane Database Syst Rev 2013; (10) CD004803
  • 3 Bhandari M, Smith J, Miller LE, Block JE. Clinical and economic burden of revision knee arthroplasty. Clin Med Insights Arthritis Musculoskelet Disord 2012; 5: 89-94
  • 4 Delanois RE, Mistry JB, Gwam CU, Mohamed NS, Choksi US, Mont MA. Current Epidemiology of Revision Total Knee Arthroplasty in the United States. J Arthroplasty 2017; 32 (09) 2663-2668
  • 5 Figueroa F, Parker D, Fritsch B, Oussedik S. New and evolving technologies for knee arthroplasty—computer navigation and robotics: state of the art. J ISAKOS 2018; 3: 46-54
  • 6 Kayani B, Konan S, Tahmassebi J, Pietrzak JRT, Haddad FS. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: a prospective cohort study. Bone Joint J 2018; 100-B (07) 930-937
  • 7 Lonner J. Robotically Assisted Unicompartmental Knee Arthroplasty with a Handheld Image-Free Sculpting Tool. Oper Tech Orthop 2015; 25: 104-113
  • 8 Marchand RC, Sodhi N, Bhowmik-Stoker M. , et al. Does the Robotic Arm and Preoperative CT Planning Help with 3D Intraoperative Total Knee Arthroplasty Planning?. J Knee Surg 2019; 32 (08) 742-749
  • 9 Christ AB, Pearle AD, Mayman DJ, Haas SB. Robotic-Assisted Unicompartmental Knee Arthroplasty: State-of-the Art and Review of the Literature. J Arthroplasty 2018; 33 (07) 1994-2001
  • 10 Campi S, Tibrewal S, Cuthbert R, Tibrewal SB. Unicompartmental knee replacement - Current perspectives. J Clin Orthop Trauma 2018; 9 (01) 17-23
  • 11 Goodfellow J, OC J, Dodd CAF, Murray DW. Unicompartmental Arthroplasty with the Oxford Knee. New York: Oxford University Press; 2006
  • 12 Batailler C, White N, Ranaldi FM, Neyret P, Servien E, Lustig S. Improved implant position and lower revision rate with robotic-assisted unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2019; 27 (04) 1232-1240
  • 13 Bell SW, Anthony I, Jones B, MacLean A, Rowe P, Blyth M. Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: data from a prospective, randomized controlled study. J Bone Joint Surg Am 2016; 98 (08) 627-635
  • 14 Kayani B, Konan S, Tahmassebi J, Rowan FE, Haddad FS. An assessment of early functional rehabilitation and hospital discharge in conventional versus robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Joint J 2019; 101-B (01) 24-33
  • 15 Iñiguez M, Negrín R, Duboy J. Robotic Assisted Unicompartmental Arthroplasty: Can We Improve Accuracy? 12th Biennial ISAKOS Congress, Cancún, Mexico, 2019
  • 16 Jenny JY, Picard F. Learning navigation - Learning with navigation. A review. SICOT J 2017; 3: 39
  • 17 Kayani B, Konan S, Pietrzak JRT, Huq SS, Tahmassebi J, Haddad FS. The learning curve associated with robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Joint J 2018; 100-B (08) 1033-1042
  • 18 Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS. Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc 2019; 27 (04) 1132-1141
  • 19 Lonner JH, John TK, Conditt MA. Robotic arm-assisted UKA improves tibial component alignment: a pilot study. Clin Orthop Relat Res 2010; 468 (01) 141-146
  • 20 Plate JF, Mofidi A, Mannava S. , et al. Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty. Adv Orthop 2013; 2013: 837167
  • 21 Swank ML, Alkire M, Conditt M, Lonner JH. Technology and cost-effectiveness in knee arthroplasty: computer navigation and robotics. Am J Orthop 2009; 38 (2, Suppl): 32-36
  • 22 Moschetti WE, Konopka JF, Rubash HE, Genuario JW. Can Robot-Assisted Unicompartmental Knee Arthroplasty Be Cost-Effective? A Markov Decision Analysis. J Arthroplasty 2016; 31 (04) 759-765
  • 23 Lonner JH, Smith JR, Picard F, Hamlin B, Rowe PJ, Riches PE. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study. Clin Orthop Relat Res 2015; 473 (01) 206-212
  • 24 Cartiaux O, Jean-Yves J, Joscowicz L. Accuracy of Computer-Aided Techniques in Orthopaedic Surgery. How Can It Be Defined, Measured Experimentally, and Analyzed from a Clinical Perspective?. J Bone Joint Surg Am 2017; 99 (08) e39
  • 25 Gilmour A, MacLean AD, Rowe PJ. , et al. Robotic-Arm-Assisted vs Conventional Unicompartmental Knee Arthroplasty. The 2-Year Clinical Outcomes of a Randomized Controlled Trial. J Arthroplasty 2018; 33 (7S): S109-S115
  • 26 Blyth MJG, Anthony I, Rowe P, Banger MS, MacLean A, Jones B. Robotic arm-assisted versus conventional unicompartmental knee arthroplasty. Bone Joint Res 2017; 6 (11) 631-639