Semin Musculoskelet Radiol 2019; 23(06): 609-620
DOI: 10.1055/s-0039-1697936
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Weight-bearing MRI of the Lumbar Spine: Technical Aspects

Cecilie Lerche Nordberg
1   Department of Rheumatology, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
2   Department of Radiology, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
1   Department of Rheumatology, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
Janus Damm Nybing
2   Department of Radiology, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
2   Department of Radiology, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
Henning Bliddal
1   Department of Rheumatology, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
3   Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
Gilles Fournier
4   Center for Rheumatology and Spine Diseases, Rigshospitalet, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
Giuseppe Guglielmi
5   Department of Radiology, University of Foggia, Foggia, Italy
2   Department of Radiology, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
› Author Affiliations
Funding Sources Cecilie Lerche Nordberg: Oak Foundation:, Frederiksberg and Bispebjerg Hospital. Bjarke Brandt Hansen: Gigtforeningen,
Further Information

Publication History

Publication Date:
19 November 2019 (online)


Magnetic resonance imaging (MRI) has an established role in the assessment of degenerative musculoskeletal conditions. However, conventional supine MRI findings often correlate poorly with clinical findings. Some patients experience accentuated back pain in the weight-bearing position. Therefore, supine MRI may underestimate the severity of degenerative spine findings. To try and improve the clinical validity of spine imaging, axial loading devices have been used with conventional supine MR imaging to simulate loading of the upright spine. More recently, upright weight-bearing MRI systems (0.25–0.6 T) were introduced, allowing images to be obtained in the standing or seated weight-bearing position and even during upright flexion or extension, rotation, or bending. Some scanners even enable capturing of real-time spinal movement. This review addresses the technical aspects and potential challenges of weight-bearing MRI, both in clinical practice and research.

Supplementary Material

  • References

  • 1 Oliveira CB, Maher CG, Pinto RZ. , et al. Clinical practice guidelines for the management of non-specific low back pain in primary care: an updated overview. Eur Spine J 2018; 27 (11) 2791-2803
  • 2 Sudoł-Szopińska I, Jurik AG, Eshed I. , et al. Recommendations of the ESSR Arthritis Subcommittee for the use of magnetic resonance imaging in musculoskeletal rheumatic diseases. Semin Musculoskelet Radiol 2015; 19 (04) 396-411
  • 3 Oren O, Kebebew E, Ioannidis JPA. Curbing unnecessary and wasted diagnostic imaging. JAMA 2019; 321 (03) 245-246
  • 4 Ramadorai U, Hire J, DeVine J, Brodt E, Dettori J. Incidental findings on magnetic resonance imaging of the spine in the asymptomatic pediatric population: a systematic review. Evid Based Spine Care J 2014; 05 (02) 095-100
  • 5 Brinjikji W, Luetmer PH, Comstock B. , et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 2015; 36 (04) 811-816
  • 6 Tonosu J, Oka H, Higashikawa A, Okazaki H, Tanaka S, Matsudaira K. The associations between magnetic resonance imaging findings and low back pain: a 10-year longitudinal analysis. PLoS One 2017; 12 (11) e0188057
  • 7 Berg L, Hellum C, Gjertsen Ø. , et al; Norwegian Spine Study Group. Do more MRI findings imply worse disability or more intense low back pain? A cross-sectional study of candidates for lumbar disc prosthesis. Skeletal Radiol 2013; 42 (11) 1593-1602
  • 8 Segebarth B, Kurd MF, Haug PH, Davis R. Routine upright imaging for evaluating degenerative lumbar stenosis: incidence of degenerative spondylolisthesis missed on supine MRI. J Spinal Disord Tech 2015; 28 (10) 394-397
  • 9 Wilkinson AG, Sellar RJ. The influence of needle size and other factors on the incidence of adverse effects caused by myelography. Clin Radiol 1991; 44 (05) 338-341
  • 10 Merkle M, Maier G, Danz S. , et al. The value of dynamic radiographic myelography in addition to magnetic resonance imaging in detection lumbar spinal canal stenosis: a prospective study. Clin Neurol Neurosurg 2016; 143 (143) 4-8
  • 11 Hagerty SE, Steinmetz BD, Furman MB. Lumbar myelography. In: Atlas of Image-Guided Spinal Procedures. Philadelphia, PA: Elsevier; 2018: 237-248
  • 12 Wildermuth S, Zanetti M, Duewell S. , et al. Lumbar spine: quantitative and qualitative assessment of positional (upright flexion and extension) MR imaging and myelography. Radiology 1998; 207 (02) 391-398
  • 13 van Goethem JWM, van den Hauwe L, Parizel PM. , eds. Spinal Imaging: Diagnostic Imaging of the Spine and Spinal Cord. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg; 2007
  • 14 Kimura S, Steinbach GC, Watenpaugh DE, Hargens AR. Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine 2001; 26 (23) 2596-2600
  • 15 Danielson B, Willén J. Axially loaded magnetic resonance image of the lumbar spine in asymptomatic individuals. Spine 2001; 26 (23) 2601-2606
  • 16 Kanno H, Endo T, Ozawa H. , et al. Axial loading during magnetic resonance imaging in patients with lumbar spinal canal stenosis: does it reproduce the positional change of the dural sac detected by upright myelography?. Spine 2012; 37 (16) E985-E992
  • 17 Kanno H, Aizawa T, Ozawa H, Koizumi Y, Morozumi N, Itoi E. An increase in the degree of olisthesis during axial loading reduces the dural sac size and worsens clinical symptoms in patients with degenerative spondylolisthesis. Spine J 2018; 18 (05) 726-733
  • 18 Hansson T, Suzuki N, Hebelka H, Gaulitz A. The narrowing of the lumbar spinal canal during loaded MRI: the effects of the disc and ligamentum flavum. Eur Spine J 2009; 18 (05) 679-686
  • 19 Willén J, Danielson B. The diagnostic effect from axial loading of the lumbar spine during computed tomography and magnetic resonance imaging in patients with degenerative disorders. Spine 2001; 26 (23) 2607-2614
  • 20 Willén J, Wessberg PJ, Danielsson B. Surgical results in hidden lumbar spinal stenosis detected by axial loaded computed tomography and magnetic resonance imaging: an outcome study. Spine 2008; 33 (04) E109-E115
  • 21 Wang YC, Jeng CM, Wu CY. , et al. Dynamic effects of axial loading on the lumbar spine during magnetic resonance imaging in patients with suspected spinal stenosis. J Formos Med Assoc 2008; 107 (04) 334-339
  • 22 Hiwatashi A, Danielson B, Moritani T. , et al. Axial loading during MR imaging can influence treatment decision for symptomatic spinal stenosis. AJNR Am J Neuroradiol 2004; 25 (02) 170-174
  • 23 Kim YK, Lee JW, Kim HJ, Yeom JS, Kang HS. Diagnostic advancement of axial loaded lumbar spine MRI in patients with clinically suspected central spinal canal stenosis. Spine 2013; 38 (21) E1342-E1347
  • 24 Kanno H, Ozawa H, Koizumi Y. , et al. Changes in lumbar spondylolisthesis on axial-loaded MRI: do they reproduce the positional changes in the degree of olisthesis observed on X-ray images in the standing position?. Spine J 2015; 15 (06) 1255-1262
  • 25 Huang KY, Lin RM, Lee YL, Li JD. Factors affecting disability and physical function in degenerative lumbar spondylolisthesis of L4-5: evaluation with axially loaded MRI. Eur Spine J 2009; 18 (12) 1851-1857
  • 26 Ozawa H, Kanno H, Koizumi Y. , et al. Dynamic changes in the dural sac cross-sectional area on axial loaded MR imaging: is there a difference between degenerative spondylolisthesis and spinal stenosis?. AJNR Am J Neuroradiol 2012; 33 (06) 1191-1197
  • 27 Danielson BI, Willén J, Gaulitz A, Niklason T, Hansson TH. Axial loading of the spine during CT and MR in patients with suspected lumbar spinal stenosis. Acta Radiol 1998; 39 (06) 604-611
  • 28 Marques JP, Simonis FFJ, Webb AG. Low-field MRI: an MR physics perspective. J Magn Reson Imaging 2019; 49 (06) 1528-1542
  • 29 Lee RKL, Griffith JF, Lau YYO. , et al. Diagnostic capability of low- versus high-field magnetic resonance imaging for lumbar degenerative disease. Spine 2015; 40 (06) 382-391
  • 30 Jinkins JR, Dworkin JS, Damadian RV. Upright, weight-bearing, dynamic-kinetic MRI of the spine: initial results. Eur Radiol 2005; 15 (09) 1815-1825
  • 31 Hansen BB. Introducing standing weight-bearing MRI in the diagnostics of low back pain and degenerative spinal disorders. Dan Med J 2017; 64 (10) 1-23
  • 32 Lee RKL, Griffith JF, Leung JHY. , et al. Effect of upright position on tonsillar level in adolescent idiopathic scoliosis. Eur Radiol 2015; 25 (08) 2397-2402
  • 33 Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging 2005; 22 (05) 591-596
  • 34 Alperin N, Lee SH, Bagci AM. MRI measurements of intracranial pressure in the upright posture: the effect of the hydrostatic pressure gradient. J Magn Reson Imaging 2015; 42 (04) 1158-1163
  • 35 Pannu HK, Javitt MC, Glanc P. , et al. ACR Appropriateness Criteria pelvic floor dysfunction. J Am Coll Radiol 2015; 12 (02) 134-142
  • 36 Splendiani A, Perri M, Grattacaso G. , et al. Magnetic resonance imaging (MRI) of the lumbar spine with dedicated G-scan machine in the upright position: a retrospective study and our experience in 10 years with 4305 patients. Radiol Med (Torino) 2016; 121 (01) 38-44
  • 37 Tarantino U, Fanucci E, Iundusi R. , et al. Lumbar spine MRI in upright position for diagnosing acute and chronic low back pain: statistical analysis of morphological changes. J Orthop Traumatol 2013; 14 (01) 15-22
  • 38 Hansen BB, Hansen P, Grindsted J. , et al. Conventional supine MRI with a lumbar pillow—an alternative to weight-bearing MRI for diagnosing spinal stenosis?. Spine 2017; 42 (09) 662-669
  • 39 Shymon S, Hargens AR, Minkoff LA, Chang DG. Body posture and backpack loading: an upright magnetic resonance imaging study of the adult lumbar spine. Eur Spine J 2014; 23 (07) 1407-1413
  • 40 Lee SU, Hargens AR, Fredericson M, Lang PK. Lumbar spine disc heights and curvature: upright posture vs. supine compression harness. Aviat Space Environ Med 2003; 74 (05) 512-516
  • 41 Karadimas EJ, Siddiqui M, Smith FW, Wardlaw D. Positional MRI changes in supine versus sitting postures in patients with degenerative lumbar spine. J Spinal Disord Tech 2006; 19 (07) 495-500
  • 42 Zou J, Yang H, Miyazaki M. , et al. Dynamic bulging of intervertebral discs in the degenerative lumbar spine. Spine 2009; 34 (23) 2545-2550
  • 43 Zou J, Yang H, Miyazaki M. , et al. Missed lumbar disc herniations diagnosed with kinetic magnetic resonance imaging. Spine 2008; 33 (05) E140-E144
  • 44 Zamani AA, Moriarty T, Hsu L. , et al. Functional MRI of the lumbar spine in erect position in a superconducting open-configuration MR system: preliminary results. J Magn Reson Imaging 1998; 8 (06) 1329-1333
  • 45 Alyas F, Connell D, Saifuddin A. Upright positional MRI of the lumbar spine. Clin Radiol 2008; 63 (09) 1035-1048
  • 46 Schmid MR, Stucki G, Duewell S, Wildermuth S, Romanowski B, Hodler J. Changes in cross-sectional measurements of the spinal canal and intervertebral foramina as a function of body position: in vivo studies on an open-configuration MR system. AJR Am J Roentgenol 1999; 172 (04) 1095-1102
  • 47 Jensen RK, Kent P, Jensen TS, Kjaer P. The association between subgroups of MRI findings identified with latent class analysis and low back pain in 40-year-old Danes. BMC Musculoskelet Disord 2018; 19 (01) 62
  • 48 Lau YYO, Lee RKL, Griffith JF, Chan CLY, Law SW, Kwok KO. Changes in dural sac caliber with standing MRI improve correlation with symptoms of lumbar spinal stenosis. Eur Spine J 2017; 26 (10) 2666-2675
  • 49 Madsen R, Jensen TS, Pope M, Sørensen JS, Bendix T. The effect of body position and axial load on spinal canal morphology: an MRI study of central spinal stenosis. Spine 2008; 33 (01) 61-67
  • 50 Shellock FG, Crues JVMR. MR procedures: biologic effects, safety, and patient care. Radiology 2004; 232 (03) 635-652
  • 51 Hansen BB, Hansen P, Carrino JA, Fournier G, Rasti Z, Boesen M. Imaging in mechanical back pain: anything new?. Best Pract Res Clin Rheumatol 2016; 30 (04) 766-785
  • 52 Morishita Y, Hymanson H, Miyazaki M. , et al. Kinematic evaluation of the spine: a kinetic magnetic resonance imaging study. J Orthop Surg (Hong Kong) 2008; 16 (03) 348-350
  • 53 Weishaupt D, Schmid MR, Zanetti M. , et al. Positional MR imaging of the lumbar spine: does it demonstrate nerve root compromise not visible at conventional MR imaging?. Radiology 2000; 215 (01) 247-253
  • 54 Hansen BB, Bouert R, Bliddal H. , et al. External pneumatic compression device prevents fainting in standing weight-bearing MRI: a cohort study. Skeletal Radiol 2013; 42 (10) 1437-1442
  • 55 Mauch F, Jung C, Huth J, Bauer G. Changes in the lumbar spine of athletes from supine to the true-standing position in magnetic resonance imaging. Spine 2010; 35 (09) 1002-1007
  • 56 Hansen BB, Bendix T, Grindsted J. , et al. Effect of lumbar disc degeneration and low-back pain on the lumbar lordosis in supine and standing: a cross-sectional MRI study. Spine 2015; 40 (21) 1690-1696
  • 57 Hansen BB, Ciochon UM, Trampedach CR, Christensen AF, Rasti Z, Boesen M. Grading lumbar disc degeneration: a comparison between low- and high-field MRI. Acta Radiol 2019 ; April 19 (Epub ahead of print)
  • 58 Bendix T, Sorensen JS, Henriksson GAC, Bolstad JE, Narvestad EK, Jensen TS. Lumbar Modic changes—a comparison between findings at low- and high-field magnetic resonance imaging. Spine 2012; 37 (20) 1756-1762
  • 59 Coffey AM, Truong ML, Chekmenev EY. Low-field MRI can be more sensitive than high-field MRI. J Magn Reson 2013; 237: 169-174
  • 60 Levinson W, Born K, Wolfson D. Choosing Wisely campaigns: a work in progress. JAMA 2018; 319 (19) 1975-1976
  • 61 Chou R, Qaseem A, Snow V. , et al; Clinical Efficacy Assessment Subcommittee of the American College of Physicians; American College of Physicians; American Pain Society Low Back Pain Guidelines Panel. Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann Intern Med 2007; 147 (07) 478-491
  • 62 Patel ND, Broderick DF, Burns J. , et al. ACR Appropriateness Criteria Low Back Pain. J Am Coll Radiol 2016; 13 (09) 1069-1078
  • 63 Srinivas SV, Deyo RA, Berger ZD. Application of “less is more” to low back pain. Arch Intern Med 2012; 172 (13) 1016-1020
  • 64 Jarvik JG, Hollingworth W, Martin B. , et al. Rapid magnetic resonance imaging vs radiographs for patients with low back pain: a randomized controlled trial. JAMA 2003; 289 (21) 2810-2818
  • 65 Mafi JN, McCarthy EP, Davis RB, Landon BE. Worsening trends in the management and treatment of back pain. JAMA Intern Med 2013; 173 (17) 1573-1581
  • 66 Simony A, Hansen EJ, Christensen SB, Carreon LY, Andersen MO. Incidence of cancer in adolescent idiopathic scoliosis patients treated 25 years previously. Eur Spine J 2016; 25 (10) 3366-3370
  • 67 Wessberg P, Danielson BI, Willén J. Comparison of Cobb angles in idiopathic scoliosis on standing radiographs and supine axially loaded MRI. Spine 2006; 31 (26) 3039-3044